Metamath Proof Explorer


Theorem sin2t3rdpi

Description: The sine of 2 x. ( _pi / 3 ) is ( sqrt 3 ) / 2 . (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion sin2t3rdpi sin 2 π 3 = 3 2

Proof

Step Hyp Ref Expression
1 3cn 3
2 ax-1cn 1
3 picn π
4 3ne0 3 0
5 3 1 4 divcli π 3
6 1 2 5 subdiri 3 1 π 3 = 3 π 3 1 π 3
7 3m1e2 3 1 = 2
8 7 oveq1i 3 1 π 3 = 2 π 3
9 3 1 4 divcan2i 3 π 3 = π
10 5 mullidi 1 π 3 = π 3
11 9 10 oveq12i 3 π 3 1 π 3 = π π 3
12 6 8 11 3eqtr3i 2 π 3 = π π 3
13 12 fveq2i sin 2 π 3 = sin π π 3
14 sinpim π 3 sin π π 3 = sin π 3
15 5 14 ax-mp sin π π 3 = sin π 3
16 sincos3rdpi sin π 3 = 3 2 cos π 3 = 1 2
17 16 simpli sin π 3 = 3 2
18 13 15 17 3eqtri sin 2 π 3 = 3 2