Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Trigonometry and Calculus
sinpim
Next ⟩
cospim
Metamath Proof Explorer
Ascii
Unicode
Theorem
sinpim
Description:
Sine of a number subtracted from
_pi
.
(Contributed by
SN
, 19-Nov-2025)
Ref
Expression
Assertion
sinpim
⊢
A
∈
ℂ
→
sin
⁡
π
−
A
=
sin
⁡
A
Proof
Step
Hyp
Ref
Expression
1
id
⊢
A
∈
ℂ
→
A
∈
ℂ
2
picn
⊢
π
∈
ℂ
3
2
a1i
⊢
A
∈
ℂ
→
π
∈
ℂ
4
1
3
subcld
⊢
A
∈
ℂ
→
A
−
π
∈
ℂ
5
sinneg
⊢
A
−
π
∈
ℂ
→
sin
⁡
−
A
−
π
=
−
sin
⁡
A
−
π
6
4
5
syl
⊢
A
∈
ℂ
→
sin
⁡
−
A
−
π
=
−
sin
⁡
A
−
π
7
1
3
negsubdi2d
⊢
A
∈
ℂ
→
−
A
−
π
=
π
−
A
8
7
fveq2d
⊢
A
∈
ℂ
→
sin
⁡
−
A
−
π
=
sin
⁡
π
−
A
9
sincl
⊢
A
∈
ℂ
→
sin
⁡
A
∈
ℂ
10
sinmpi
⊢
A
∈
ℂ
→
sin
⁡
A
−
π
=
−
sin
⁡
A
11
10
eqcomd
⊢
A
∈
ℂ
→
−
sin
⁡
A
=
sin
⁡
A
−
π
12
9
11
negcon1ad
⊢
A
∈
ℂ
→
−
sin
⁡
A
−
π
=
sin
⁡
A
13
6
8
12
3eqtr3d
⊢
A
∈
ℂ
→
sin
⁡
π
−
A
=
sin
⁡
A