| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 2 |
|
picn |
⊢ π ∈ ℂ |
| 3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℂ → π ∈ ℂ ) |
| 4 |
1 3
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − π ) ∈ ℂ ) |
| 5 |
|
sinneg |
⊢ ( ( 𝐴 − π ) ∈ ℂ → ( sin ‘ - ( 𝐴 − π ) ) = - ( sin ‘ ( 𝐴 − π ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - ( 𝐴 − π ) ) = - ( sin ‘ ( 𝐴 − π ) ) ) |
| 7 |
1 3
|
negsubdi2d |
⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 − π ) = ( π − 𝐴 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - ( 𝐴 − π ) ) = ( sin ‘ ( π − 𝐴 ) ) ) |
| 9 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
|
sinmpi |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 − π ) ) = - ( sin ‘ 𝐴 ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ 𝐴 ) = ( sin ‘ ( 𝐴 − π ) ) ) |
| 12 |
9 11
|
negcon1ad |
⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ ( 𝐴 − π ) ) = ( sin ‘ 𝐴 ) ) |
| 13 |
6 8 12
|
3eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( π − 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |