Metamath Proof Explorer


Theorem sinpim

Description: Sine of a number subtracted from _pi . (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion sinpim ( 𝐴 ∈ ℂ → ( sin ‘ ( π − 𝐴 ) ) = ( sin ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ )
2 picn π ∈ ℂ
3 2 a1i ( 𝐴 ∈ ℂ → π ∈ ℂ )
4 1 3 subcld ( 𝐴 ∈ ℂ → ( 𝐴 − π ) ∈ ℂ )
5 sinneg ( ( 𝐴 − π ) ∈ ℂ → ( sin ‘ - ( 𝐴 − π ) ) = - ( sin ‘ ( 𝐴 − π ) ) )
6 4 5 syl ( 𝐴 ∈ ℂ → ( sin ‘ - ( 𝐴 − π ) ) = - ( sin ‘ ( 𝐴 − π ) ) )
7 1 3 negsubdi2d ( 𝐴 ∈ ℂ → - ( 𝐴 − π ) = ( π − 𝐴 ) )
8 7 fveq2d ( 𝐴 ∈ ℂ → ( sin ‘ - ( 𝐴 − π ) ) = ( sin ‘ ( π − 𝐴 ) ) )
9 sincl ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ )
10 sinmpi ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 − π ) ) = - ( sin ‘ 𝐴 ) )
11 10 eqcomd ( 𝐴 ∈ ℂ → - ( sin ‘ 𝐴 ) = ( sin ‘ ( 𝐴 − π ) ) )
12 9 11 negcon1ad ( 𝐴 ∈ ℂ → - ( sin ‘ ( 𝐴 − π ) ) = ( sin ‘ 𝐴 ) )
13 6 8 12 3eqtr3d ( 𝐴 ∈ ℂ → ( sin ‘ ( π − 𝐴 ) ) = ( sin ‘ 𝐴 ) )