| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 2 |
|
picn |
|- _pi e. CC |
| 3 |
2
|
a1i |
|- ( A e. CC -> _pi e. CC ) |
| 4 |
1 3
|
subcld |
|- ( A e. CC -> ( A - _pi ) e. CC ) |
| 5 |
|
sinneg |
|- ( ( A - _pi ) e. CC -> ( sin ` -u ( A - _pi ) ) = -u ( sin ` ( A - _pi ) ) ) |
| 6 |
4 5
|
syl |
|- ( A e. CC -> ( sin ` -u ( A - _pi ) ) = -u ( sin ` ( A - _pi ) ) ) |
| 7 |
1 3
|
negsubdi2d |
|- ( A e. CC -> -u ( A - _pi ) = ( _pi - A ) ) |
| 8 |
7
|
fveq2d |
|- ( A e. CC -> ( sin ` -u ( A - _pi ) ) = ( sin ` ( _pi - A ) ) ) |
| 9 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
| 10 |
|
sinmpi |
|- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
| 11 |
10
|
eqcomd |
|- ( A e. CC -> -u ( sin ` A ) = ( sin ` ( A - _pi ) ) ) |
| 12 |
9 11
|
negcon1ad |
|- ( A e. CC -> -u ( sin ` ( A - _pi ) ) = ( sin ` A ) ) |
| 13 |
6 8 12
|
3eqtr3d |
|- ( A e. CC -> ( sin ` ( _pi - A ) ) = ( sin ` A ) ) |