| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 2 |
|
picn |
|- _pi e. CC |
| 3 |
2
|
a1i |
|- ( A e. CC -> _pi e. CC ) |
| 4 |
1 3
|
subcld |
|- ( A e. CC -> ( A - _pi ) e. CC ) |
| 5 |
|
cosneg |
|- ( ( A - _pi ) e. CC -> ( cos ` -u ( A - _pi ) ) = ( cos ` ( A - _pi ) ) ) |
| 6 |
4 5
|
syl |
|- ( A e. CC -> ( cos ` -u ( A - _pi ) ) = ( cos ` ( A - _pi ) ) ) |
| 7 |
1 3
|
negsubdi2d |
|- ( A e. CC -> -u ( A - _pi ) = ( _pi - A ) ) |
| 8 |
7
|
fveq2d |
|- ( A e. CC -> ( cos ` -u ( A - _pi ) ) = ( cos ` ( _pi - A ) ) ) |
| 9 |
|
cosmpi |
|- ( A e. CC -> ( cos ` ( A - _pi ) ) = -u ( cos ` A ) ) |
| 10 |
6 8 9
|
3eqtr3d |
|- ( A e. CC -> ( cos ` ( _pi - A ) ) = -u ( cos ` A ) ) |