Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
|- _pi e. CC |
2 |
|
3cn |
|- 3 e. CC |
3 |
|
3ne0 |
|- 3 =/= 0 |
4 |
1 2 3
|
divcli |
|- ( _pi / 3 ) e. CC |
5 |
|
sincos3rdpi |
|- ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) ) |
6 |
5
|
simpri |
|- ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) |
7 |
|
0re |
|- 0 e. RR |
8 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
9 |
7 8
|
gtneii |
|- ( 1 / 2 ) =/= 0 |
10 |
6 9
|
eqnetri |
|- ( cos ` ( _pi / 3 ) ) =/= 0 |
11 |
|
tanval |
|- ( ( ( _pi / 3 ) e. CC /\ ( cos ` ( _pi / 3 ) ) =/= 0 ) -> ( tan ` ( _pi / 3 ) ) = ( ( sin ` ( _pi / 3 ) ) / ( cos ` ( _pi / 3 ) ) ) ) |
12 |
4 10 11
|
mp2an |
|- ( tan ` ( _pi / 3 ) ) = ( ( sin ` ( _pi / 3 ) ) / ( cos ` ( _pi / 3 ) ) ) |
13 |
5
|
simpli |
|- ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) |
14 |
13 6
|
oveq12i |
|- ( ( sin ` ( _pi / 3 ) ) / ( cos ` ( _pi / 3 ) ) ) = ( ( ( sqrt ` 3 ) / 2 ) / ( 1 / 2 ) ) |
15 |
2
|
a1i |
|- ( T. -> 3 e. CC ) |
16 |
15
|
sqrtcld |
|- ( T. -> ( sqrt ` 3 ) e. CC ) |
17 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
18 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
19 |
|
ax-1ne0 |
|- 1 =/= 0 |
20 |
19
|
a1i |
|- ( T. -> 1 =/= 0 ) |
21 |
|
2ne0 |
|- 2 =/= 0 |
22 |
21
|
a1i |
|- ( T. -> 2 =/= 0 ) |
23 |
16 17 18 20 22
|
divcan7d |
|- ( T. -> ( ( ( sqrt ` 3 ) / 2 ) / ( 1 / 2 ) ) = ( ( sqrt ` 3 ) / 1 ) ) |
24 |
16
|
div1d |
|- ( T. -> ( ( sqrt ` 3 ) / 1 ) = ( sqrt ` 3 ) ) |
25 |
23 24
|
eqtrd |
|- ( T. -> ( ( ( sqrt ` 3 ) / 2 ) / ( 1 / 2 ) ) = ( sqrt ` 3 ) ) |
26 |
25
|
mptru |
|- ( ( ( sqrt ` 3 ) / 2 ) / ( 1 / 2 ) ) = ( sqrt ` 3 ) |
27 |
12 14 26
|
3eqtri |
|- ( tan ` ( _pi / 3 ) ) = ( sqrt ` 3 ) |