Metamath Proof Explorer


Theorem tan3rdpi

Description: The tangent of _pi / 3 is sqrt 3 . (Contributed by SN, 2-Sep-2025)

Ref Expression
Assertion tan3rdpi
|- ( tan ` ( _pi / 3 ) ) = ( sqrt ` 3 )

Proof

Step Hyp Ref Expression
1 picn
 |-  _pi e. CC
2 3cn
 |-  3 e. CC
3 3ne0
 |-  3 =/= 0
4 1 2 3 divcli
 |-  ( _pi / 3 ) e. CC
5 sincos3rdpi
 |-  ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) )
6 5 simpri
 |-  ( cos ` ( _pi / 3 ) ) = ( 1 / 2 )
7 0re
 |-  0 e. RR
8 halfgt0
 |-  0 < ( 1 / 2 )
9 7 8 gtneii
 |-  ( 1 / 2 ) =/= 0
10 6 9 eqnetri
 |-  ( cos ` ( _pi / 3 ) ) =/= 0
11 tanval
 |-  ( ( ( _pi / 3 ) e. CC /\ ( cos ` ( _pi / 3 ) ) =/= 0 ) -> ( tan ` ( _pi / 3 ) ) = ( ( sin ` ( _pi / 3 ) ) / ( cos ` ( _pi / 3 ) ) ) )
12 4 10 11 mp2an
 |-  ( tan ` ( _pi / 3 ) ) = ( ( sin ` ( _pi / 3 ) ) / ( cos ` ( _pi / 3 ) ) )
13 5 simpli
 |-  ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 )
14 13 6 oveq12i
 |-  ( ( sin ` ( _pi / 3 ) ) / ( cos ` ( _pi / 3 ) ) ) = ( ( ( sqrt ` 3 ) / 2 ) / ( 1 / 2 ) )
15 2 a1i
 |-  ( T. -> 3 e. CC )
16 15 sqrtcld
 |-  ( T. -> ( sqrt ` 3 ) e. CC )
17 1cnd
 |-  ( T. -> 1 e. CC )
18 2cnd
 |-  ( T. -> 2 e. CC )
19 ax-1ne0
 |-  1 =/= 0
20 19 a1i
 |-  ( T. -> 1 =/= 0 )
21 2ne0
 |-  2 =/= 0
22 21 a1i
 |-  ( T. -> 2 =/= 0 )
23 16 17 18 20 22 divcan7d
 |-  ( T. -> ( ( ( sqrt ` 3 ) / 2 ) / ( 1 / 2 ) ) = ( ( sqrt ` 3 ) / 1 ) )
24 16 div1d
 |-  ( T. -> ( ( sqrt ` 3 ) / 1 ) = ( sqrt ` 3 ) )
25 23 24 eqtrd
 |-  ( T. -> ( ( ( sqrt ` 3 ) / 2 ) / ( 1 / 2 ) ) = ( sqrt ` 3 ) )
26 25 mptru
 |-  ( ( ( sqrt ` 3 ) / 2 ) / ( 1 / 2 ) ) = ( sqrt ` 3 )
27 12 14 26 3eqtri
 |-  ( tan ` ( _pi / 3 ) ) = ( sqrt ` 3 )