Metamath Proof Explorer


Theorem cospim

Description: Cosine of a number subtracted from _pi . (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion cospim A cos π A = cos A

Proof

Step Hyp Ref Expression
1 id A A
2 picn π
3 2 a1i A π
4 1 3 subcld A A π
5 cosneg A π cos A π = cos A π
6 4 5 syl A cos A π = cos A π
7 1 3 negsubdi2d A A π = π A
8 7 fveq2d A cos A π = cos π A
9 cosmpi A cos A π = cos A
10 6 8 9 3eqtr3d A cos π A = cos A