| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relco |
⊢ Rel ( 𝐴 ∘ 𝐵 ) |
| 2 |
|
ssrel3 |
⊢ ( Rel ( 𝐴 ∘ 𝐵 ) → ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ) |
| 4 |
|
vex |
⊢ 𝑥 ∈ V |
| 5 |
|
vex |
⊢ 𝑧 ∈ V |
| 6 |
4 5
|
brco |
⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 ↔ ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 7 |
6
|
imbi1i |
⊢ ( ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 8 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 9 |
7 8
|
bitr4i |
⊢ ( ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 10 |
9
|
albii |
⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 11 |
|
alcom |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 12 |
10 11
|
bitri |
⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 13 |
12
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 14 |
3 13
|
bitri |
⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |