Metamath Proof Explorer


Theorem cotrgOLD

Description: Obsolete version of cotrg as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof shortened by SN, 19-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cotrgOLD ABCxyzxByyAzxCz

Proof

Step Hyp Ref Expression
1 relco RelAB
2 ssrel3 RelABABCxzxABzxCz
3 1 2 ax-mp ABCxzxABzxCz
4 vex xV
5 vex zV
6 4 5 brco xABzyxByyAz
7 6 imbi1i xABzxCzyxByyAzxCz
8 19.23v yxByyAzxCzyxByyAzxCz
9 7 8 bitr4i xABzxCzyxByyAzxCz
10 9 albii zxABzxCzzyxByyAzxCz
11 alcom zyxByyAzxCzyzxByyAzxCz
12 10 11 bitri zxABzxCzyzxByyAzxCz
13 12 albii xzxABzxCzxyzxByyAzxCz
14 3 13 bitri ABCxyzxByyAzxCz