Metamath Proof Explorer


Theorem cotrgOLDOLD

Description: Obsolete version of cotrg as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cotrgOLDOLD ABCxyzxByyAzxCz

Proof

Step Hyp Ref Expression
1 relco RelAB
2 ssrel RelABABCxzxzABxzC
3 1 2 ax-mp ABCxzxzABxzC
4 vex xV
5 vex zV
6 4 5 opelco xzAByxByyAz
7 df-br xCzxzC
8 7 bicomi xzCxCz
9 6 8 imbi12i xzABxzCyxByyAzxCz
10 19.23v yxByyAzxCzyxByyAzxCz
11 9 10 bitr4i xzABxzCyxByyAzxCz
12 11 albii zxzABxzCzyxByyAzxCz
13 alcom zyxByyAzxCzyzxByyAzxCz
14 12 13 bitri zxzABxzCyzxByyAzxCz
15 14 albii xzxzABxzCxyzxByyAzxCz
16 3 15 bitri ABCxyzxByyAzxCz