| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
cycsubm.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
cycsubm.f |
⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) |
| 4 |
|
cycsubm.c |
⊢ 𝐶 = ran 𝐹 |
| 5 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 6 |
5
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → 1 ∈ ℕ0 ) |
| 7 |
|
oveq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝑖 = 1 → ( 𝐴 = ( 𝑖 · 𝐴 ) ↔ 𝐴 = ( 1 · 𝐴 ) ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑖 = 1 ) → ( 𝐴 = ( 𝑖 · 𝐴 ) ↔ 𝐴 = ( 1 · 𝐴 ) ) ) |
| 10 |
1 2
|
mulg1 |
⊢ ( 𝐴 ∈ 𝐵 → ( 1 · 𝐴 ) = 𝐴 ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 = ( 1 · 𝐴 ) ) |
| 12 |
6 9 11
|
rspcedvd |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑖 ∈ ℕ0 𝐴 = ( 𝑖 · 𝐴 ) ) |
| 13 |
1 2 3 4
|
cycsubmel |
⊢ ( 𝐴 ∈ 𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝐴 = ( 𝑖 · 𝐴 ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) |