| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubm.b |
|- B = ( Base ` G ) |
| 2 |
|
cycsubm.t |
|- .x. = ( .g ` G ) |
| 3 |
|
cycsubm.f |
|- F = ( x e. NN0 |-> ( x .x. A ) ) |
| 4 |
|
cycsubm.c |
|- C = ran F |
| 5 |
|
1nn0 |
|- 1 e. NN0 |
| 6 |
5
|
a1i |
|- ( A e. B -> 1 e. NN0 ) |
| 7 |
|
oveq1 |
|- ( i = 1 -> ( i .x. A ) = ( 1 .x. A ) ) |
| 8 |
7
|
eqeq2d |
|- ( i = 1 -> ( A = ( i .x. A ) <-> A = ( 1 .x. A ) ) ) |
| 9 |
8
|
adantl |
|- ( ( A e. B /\ i = 1 ) -> ( A = ( i .x. A ) <-> A = ( 1 .x. A ) ) ) |
| 10 |
1 2
|
mulg1 |
|- ( A e. B -> ( 1 .x. A ) = A ) |
| 11 |
10
|
eqcomd |
|- ( A e. B -> A = ( 1 .x. A ) ) |
| 12 |
6 9 11
|
rspcedvd |
|- ( A e. B -> E. i e. NN0 A = ( i .x. A ) ) |
| 13 |
1 2 3 4
|
cycsubmel |
|- ( A e. C <-> E. i e. NN0 A = ( i .x. A ) ) |
| 14 |
12 13
|
sylibr |
|- ( A e. B -> A e. C ) |