Metamath Proof Explorer


Theorem cycsubmcl

Description: The set of nonnegative integer powers of an element A contains A . Although this theorem holds for any class G , the definition of F is only meaningful if G is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses cycsubm.b B = Base G
cycsubm.t · ˙ = G
cycsubm.f F = x 0 x · ˙ A
cycsubm.c C = ran F
Assertion cycsubmcl A B A C

Proof

Step Hyp Ref Expression
1 cycsubm.b B = Base G
2 cycsubm.t · ˙ = G
3 cycsubm.f F = x 0 x · ˙ A
4 cycsubm.c C = ran F
5 1nn0 1 0
6 5 a1i A B 1 0
7 oveq1 i = 1 i · ˙ A = 1 · ˙ A
8 7 eqeq2d i = 1 A = i · ˙ A A = 1 · ˙ A
9 8 adantl A B i = 1 A = i · ˙ A A = 1 · ˙ A
10 1 2 mulg1 A B 1 · ˙ A = A
11 10 eqcomd A B A = 1 · ˙ A
12 6 9 11 rspcedvd A B i 0 A = i · ˙ A
13 1 2 3 4 cycsubmel A C i 0 A = i · ˙ A
14 12 13 sylibr A B A C