Metamath Proof Explorer


Theorem cycsubmcl

Description: The set of nonnegative integer powers of an element A contains A . Although this theorem holds for any class G , the definition of F is only meaningful if G is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses cycsubm.b B=BaseG
cycsubm.t ·˙=G
cycsubm.f F=x0x·˙A
cycsubm.c C=ranF
Assertion cycsubmcl ABAC

Proof

Step Hyp Ref Expression
1 cycsubm.b B=BaseG
2 cycsubm.t ·˙=G
3 cycsubm.f F=x0x·˙A
4 cycsubm.c C=ranF
5 1nn0 10
6 5 a1i AB10
7 oveq1 i=1i·˙A=1·˙A
8 7 eqeq2d i=1A=i·˙AA=1·˙A
9 8 adantl ABi=1A=i·˙AA=1·˙A
10 1 2 mulg1 AB1·˙A=A
11 10 eqcomd ABA=1·˙A
12 6 9 11 rspcedvd ABi0A=i·˙A
13 1 2 3 4 cycsubmel ACi0A=i·˙A
14 12 13 sylibr ABAC