Metamath Proof Explorer


Theorem cycsubm

Description: The set of nonnegative integer powers of an element A of a monoid forms a submonoid containing A (see cycsubmcl ), called the cyclic monoid generated by the element A . This corresponds to the statement in Lang p. 6. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses cycsubm.b B = Base G
cycsubm.t · ˙ = G
cycsubm.f F = x 0 x · ˙ A
cycsubm.c C = ran F
Assertion cycsubm G Mnd A B C SubMnd G

Proof

Step Hyp Ref Expression
1 cycsubm.b B = Base G
2 cycsubm.t · ˙ = G
3 cycsubm.f F = x 0 x · ˙ A
4 cycsubm.c C = ran F
5 1 2 mulgnn0cl G Mnd x 0 A B x · ˙ A B
6 5 3expa G Mnd x 0 A B x · ˙ A B
7 6 an32s G Mnd A B x 0 x · ˙ A B
8 7 3 fmptd G Mnd A B F : 0 B
9 8 frnd G Mnd A B ran F B
10 4 9 eqsstrid G Mnd A B C B
11 0nn0 0 0
12 11 a1i G Mnd A B 0 0
13 oveq1 i = 0 i · ˙ A = 0 · ˙ A
14 13 eqeq2d i = 0 0 G = i · ˙ A 0 G = 0 · ˙ A
15 14 adantl G Mnd A B i = 0 0 G = i · ˙ A 0 G = 0 · ˙ A
16 eqid 0 G = 0 G
17 1 16 2 mulg0 A B 0 · ˙ A = 0 G
18 17 adantl G Mnd A B 0 · ˙ A = 0 G
19 18 eqcomd G Mnd A B 0 G = 0 · ˙ A
20 12 15 19 rspcedvd G Mnd A B i 0 0 G = i · ˙ A
21 1 2 3 4 cycsubmel 0 G C i 0 0 G = i · ˙ A
22 20 21 sylibr G Mnd A B 0 G C
23 simplr G Mnd A B i 0 j 0 i 0
24 simpr G Mnd A B i 0 j 0 j 0
25 23 24 nn0addcld G Mnd A B i 0 j 0 i + j 0
26 25 adantr G Mnd A B i 0 j 0 b = j · ˙ A a = i · ˙ A i + j 0
27 oveq1 k = i + j k · ˙ A = i + j · ˙ A
28 27 eqeq2d k = i + j a + G b = k · ˙ A a + G b = i + j · ˙ A
29 28 adantl G Mnd A B i 0 j 0 b = j · ˙ A a = i · ˙ A k = i + j a + G b = k · ˙ A a + G b = i + j · ˙ A
30 oveq12 a = i · ˙ A b = j · ˙ A a + G b = i · ˙ A + G j · ˙ A
31 30 ancoms b = j · ˙ A a = i · ˙ A a + G b = i · ˙ A + G j · ˙ A
32 simplll G Mnd A B i 0 j 0 G Mnd
33 simpllr G Mnd A B i 0 j 0 A B
34 eqid + G = + G
35 1 2 34 mulgnn0dir G Mnd i 0 j 0 A B i + j · ˙ A = i · ˙ A + G j · ˙ A
36 32 23 24 33 35 syl13anc G Mnd A B i 0 j 0 i + j · ˙ A = i · ˙ A + G j · ˙ A
37 36 eqcomd G Mnd A B i 0 j 0 i · ˙ A + G j · ˙ A = i + j · ˙ A
38 31 37 sylan9eqr G Mnd A B i 0 j 0 b = j · ˙ A a = i · ˙ A a + G b = i + j · ˙ A
39 26 29 38 rspcedvd G Mnd A B i 0 j 0 b = j · ˙ A a = i · ˙ A k 0 a + G b = k · ˙ A
40 39 exp32 G Mnd A B i 0 j 0 b = j · ˙ A a = i · ˙ A k 0 a + G b = k · ˙ A
41 40 rexlimdva G Mnd A B i 0 j 0 b = j · ˙ A a = i · ˙ A k 0 a + G b = k · ˙ A
42 41 com23 G Mnd A B i 0 a = i · ˙ A j 0 b = j · ˙ A k 0 a + G b = k · ˙ A
43 42 rexlimdva G Mnd A B i 0 a = i · ˙ A j 0 b = j · ˙ A k 0 a + G b = k · ˙ A
44 43 impd G Mnd A B i 0 a = i · ˙ A j 0 b = j · ˙ A k 0 a + G b = k · ˙ A
45 1 2 3 4 cycsubmel a C i 0 a = i · ˙ A
46 1 2 3 4 cycsubmel b C j 0 b = j · ˙ A
47 45 46 anbi12i a C b C i 0 a = i · ˙ A j 0 b = j · ˙ A
48 1 2 3 4 cycsubmel a + G b C k 0 a + G b = k · ˙ A
49 44 47 48 3imtr4g G Mnd A B a C b C a + G b C
50 49 ralrimivv G Mnd A B a C b C a + G b C
51 1 16 34 issubm G Mnd C SubMnd G C B 0 G C a C b C a + G b C
52 51 adantr G Mnd A B C SubMnd G C B 0 G C a C b C a + G b C
53 10 22 50 52 mpbir3and G Mnd A B C SubMnd G