Metamath Proof Explorer


Theorem cyccom

Description: Condition for an operation to be commutative. Lemma for cycsubmcom and cygabl . Formerly part of proof for cygabl . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 20-Jan-2024)

Ref Expression
Hypotheses cyccom.c φcCxZc=x·˙A
cyccom.d φmZnZm+n·˙A=m·˙A+˙n·˙A
cyccom.x φXC
cyccom.y φYC
cyccom.z φZ
Assertion cyccom φX+˙Y=Y+˙X

Proof

Step Hyp Ref Expression
1 cyccom.c φcCxZc=x·˙A
2 cyccom.d φmZnZm+n·˙A=m·˙A+˙n·˙A
3 cyccom.x φXC
4 cyccom.y φYC
5 cyccom.z φZ
6 eqeq1 c=Yc=x·˙AY=x·˙A
7 6 rexbidv c=YxZc=x·˙AxZY=x·˙A
8 7 rspccv cCxZc=x·˙AYCxZY=x·˙A
9 1 8 syl φYCxZY=x·˙A
10 eqeq1 c=Xc=x·˙AX=x·˙A
11 10 rexbidv c=XxZc=x·˙AxZX=x·˙A
12 11 rspccv cCxZc=x·˙AXCxZX=x·˙A
13 1 12 syl φXCxZX=x·˙A
14 oveq1 x=yx·˙A=y·˙A
15 14 eqeq2d x=yY=x·˙AY=y·˙A
16 15 cbvrexvw xZY=x·˙AyZY=y·˙A
17 reeanv xZyZX=x·˙AY=y·˙AxZX=x·˙AyZY=y·˙A
18 5 sseld φxZx
19 18 com12 xZφx
20 19 adantr xZyZφx
21 20 impcom φxZyZx
22 5 sseld φyZy
23 22 a1d φxZyZy
24 23 imp32 φxZyZy
25 21 24 addcomd φxZyZx+y=y+x
26 25 oveq1d φxZyZx+y·˙A=y+x·˙A
27 simpr φxZyZxZyZ
28 2 adantr φxZyZmZnZm+n·˙A=m·˙A+˙n·˙A
29 oveq1 m=xm+n=x+n
30 29 oveq1d m=xm+n·˙A=x+n·˙A
31 oveq1 m=xm·˙A=x·˙A
32 31 oveq1d m=xm·˙A+˙n·˙A=x·˙A+˙n·˙A
33 30 32 eqeq12d m=xm+n·˙A=m·˙A+˙n·˙Ax+n·˙A=x·˙A+˙n·˙A
34 oveq2 n=yx+n=x+y
35 34 oveq1d n=yx+n·˙A=x+y·˙A
36 oveq1 n=yn·˙A=y·˙A
37 36 oveq2d n=yx·˙A+˙n·˙A=x·˙A+˙y·˙A
38 35 37 eqeq12d n=yx+n·˙A=x·˙A+˙n·˙Ax+y·˙A=x·˙A+˙y·˙A
39 33 38 rspc2va xZyZmZnZm+n·˙A=m·˙A+˙n·˙Ax+y·˙A=x·˙A+˙y·˙A
40 27 28 39 syl2anc φxZyZx+y·˙A=x·˙A+˙y·˙A
41 27 ancomd φxZyZyZxZ
42 oveq1 m=ym+n=y+n
43 42 oveq1d m=ym+n·˙A=y+n·˙A
44 oveq1 m=ym·˙A=y·˙A
45 44 oveq1d m=ym·˙A+˙n·˙A=y·˙A+˙n·˙A
46 43 45 eqeq12d m=ym+n·˙A=m·˙A+˙n·˙Ay+n·˙A=y·˙A+˙n·˙A
47 oveq2 n=xy+n=y+x
48 47 oveq1d n=xy+n·˙A=y+x·˙A
49 oveq1 n=xn·˙A=x·˙A
50 49 oveq2d n=xy·˙A+˙n·˙A=y·˙A+˙x·˙A
51 48 50 eqeq12d n=xy+n·˙A=y·˙A+˙n·˙Ay+x·˙A=y·˙A+˙x·˙A
52 46 51 rspc2va yZxZmZnZm+n·˙A=m·˙A+˙n·˙Ay+x·˙A=y·˙A+˙x·˙A
53 41 28 52 syl2anc φxZyZy+x·˙A=y·˙A+˙x·˙A
54 26 40 53 3eqtr3d φxZyZx·˙A+˙y·˙A=y·˙A+˙x·˙A
55 oveq12 X=x·˙AY=y·˙AX+˙Y=x·˙A+˙y·˙A
56 oveq12 Y=y·˙AX=x·˙AY+˙X=y·˙A+˙x·˙A
57 56 ancoms X=x·˙AY=y·˙AY+˙X=y·˙A+˙x·˙A
58 55 57 eqeq12d X=x·˙AY=y·˙AX+˙Y=Y+˙Xx·˙A+˙y·˙A=y·˙A+˙x·˙A
59 54 58 syl5ibrcom φxZyZX=x·˙AY=y·˙AX+˙Y=Y+˙X
60 59 rexlimdvva φxZyZX=x·˙AY=y·˙AX+˙Y=Y+˙X
61 17 60 biimtrrid φxZX=x·˙AyZY=y·˙AX+˙Y=Y+˙X
62 61 expd φxZX=x·˙AyZY=y·˙AX+˙Y=Y+˙X
63 16 62 syl7bi φxZX=x·˙AxZY=x·˙AX+˙Y=Y+˙X
64 13 63 syld φXCxZY=x·˙AX+˙Y=Y+˙X
65 64 com23 φxZY=x·˙AXCX+˙Y=Y+˙X
66 9 65 syld φYCXCX+˙Y=Y+˙X
67 4 3 66 mp2d φX+˙Y=Y+˙X