Description: Condition for an operation to be commutative. Lemma for cycsubmcom and cygabl . Formerly part of proof for cygabl . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 20-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cyccom.c | |
|
cyccom.d | |
||
cyccom.x | |
||
cyccom.y | |
||
cyccom.z | |
||
Assertion | cyccom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cyccom.c | |
|
2 | cyccom.d | |
|
3 | cyccom.x | |
|
4 | cyccom.y | |
|
5 | cyccom.z | |
|
6 | eqeq1 | |
|
7 | 6 | rexbidv | |
8 | 7 | rspccv | |
9 | 1 8 | syl | |
10 | eqeq1 | |
|
11 | 10 | rexbidv | |
12 | 11 | rspccv | |
13 | 1 12 | syl | |
14 | oveq1 | |
|
15 | 14 | eqeq2d | |
16 | 15 | cbvrexvw | |
17 | reeanv | |
|
18 | 5 | sseld | |
19 | 18 | com12 | |
20 | 19 | adantr | |
21 | 20 | impcom | |
22 | 5 | sseld | |
23 | 22 | a1d | |
24 | 23 | imp32 | |
25 | 21 24 | addcomd | |
26 | 25 | oveq1d | |
27 | simpr | |
|
28 | 2 | adantr | |
29 | oveq1 | |
|
30 | 29 | oveq1d | |
31 | oveq1 | |
|
32 | 31 | oveq1d | |
33 | 30 32 | eqeq12d | |
34 | oveq2 | |
|
35 | 34 | oveq1d | |
36 | oveq1 | |
|
37 | 36 | oveq2d | |
38 | 35 37 | eqeq12d | |
39 | 33 38 | rspc2va | |
40 | 27 28 39 | syl2anc | |
41 | 27 | ancomd | |
42 | oveq1 | |
|
43 | 42 | oveq1d | |
44 | oveq1 | |
|
45 | 44 | oveq1d | |
46 | 43 45 | eqeq12d | |
47 | oveq2 | |
|
48 | 47 | oveq1d | |
49 | oveq1 | |
|
50 | 49 | oveq2d | |
51 | 48 50 | eqeq12d | |
52 | 46 51 | rspc2va | |
53 | 41 28 52 | syl2anc | |
54 | 26 40 53 | 3eqtr3d | |
55 | oveq12 | |
|
56 | oveq12 | |
|
57 | 56 | ancoms | |
58 | 55 57 | eqeq12d | |
59 | 54 58 | syl5ibrcom | |
60 | 59 | rexlimdvva | |
61 | 17 60 | biimtrrid | |
62 | 61 | expd | |
63 | 16 62 | syl7bi | |
64 | 13 63 | syld | |
65 | 64 | com23 | |
66 | 9 65 | syld | |
67 | 4 3 66 | mp2d | |