| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cyccom.c |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ) |
| 2 |
|
cyccom.d |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 3 |
|
cyccom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
| 4 |
|
cyccom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐶 ) |
| 5 |
|
cyccom.z |
⊢ ( 𝜑 → 𝑍 ⊆ ℂ ) |
| 6 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑌 → ( 𝑐 = ( 𝑥 · 𝐴 ) ↔ 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑐 = 𝑌 → ( ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
| 8 |
7
|
rspccv |
⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) → ( 𝑌 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
| 10 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑋 → ( 𝑐 = ( 𝑥 · 𝐴 ) ↔ 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
| 11 |
10
|
rexbidv |
⊢ ( 𝑐 = 𝑋 → ( ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
| 12 |
11
|
rspccv |
⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) → ( 𝑋 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
| 13 |
1 12
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑌 = ( 𝑥 · 𝐴 ) ↔ 𝑌 = ( 𝑦 · 𝐴 ) ) ) |
| 16 |
15
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) |
| 17 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑍 ∃ 𝑦 ∈ 𝑍 ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) ↔ ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) ) |
| 18 |
5
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ℂ ) ) |
| 19 |
18
|
com12 |
⊢ ( 𝑥 ∈ 𝑍 → ( 𝜑 → 𝑥 ∈ ℂ ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) → ( 𝜑 → 𝑥 ∈ ℂ ) ) |
| 21 |
20
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → 𝑥 ∈ ℂ ) |
| 22 |
5
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑍 → 𝑦 ∈ ℂ ) ) |
| 23 |
22
|
a1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 → ( 𝑦 ∈ 𝑍 → 𝑦 ∈ ℂ ) ) ) |
| 24 |
23
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → 𝑦 ∈ ℂ ) |
| 25 |
21 24
|
addcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑦 + 𝑥 ) · 𝐴 ) ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) |
| 28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 29 |
|
oveq1 |
⊢ ( 𝑚 = 𝑥 → ( 𝑚 + 𝑛 ) = ( 𝑥 + 𝑛 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 + 𝑛 ) · 𝐴 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑚 = 𝑥 → ( 𝑚 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 33 |
30 32
|
eqeq12d |
⊢ ( 𝑚 = 𝑥 → ( ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑥 + 𝑛 ) = ( 𝑥 + 𝑦 ) ) |
| 35 |
34
|
oveq1d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 + 𝑦 ) · 𝐴 ) ) |
| 36 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
| 38 |
35 37
|
eqeq12d |
⊢ ( 𝑛 = 𝑦 → ( ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) ) |
| 39 |
33 38
|
rspc2va |
⊢ ( ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
| 40 |
27 28 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
| 41 |
27
|
ancomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑦 ∈ 𝑍 ∧ 𝑥 ∈ 𝑍 ) ) |
| 42 |
|
oveq1 |
⊢ ( 𝑚 = 𝑦 → ( 𝑚 + 𝑛 ) = ( 𝑦 + 𝑛 ) ) |
| 43 |
42
|
oveq1d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 + 𝑛 ) · 𝐴 ) ) |
| 44 |
|
oveq1 |
⊢ ( 𝑚 = 𝑦 → ( 𝑚 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 45 |
44
|
oveq1d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 46 |
43 45
|
eqeq12d |
⊢ ( 𝑚 = 𝑦 → ( ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) ) |
| 47 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑦 + 𝑛 ) = ( 𝑦 + 𝑥 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 + 𝑥 ) · 𝐴 ) ) |
| 49 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 51 |
48 50
|
eqeq12d |
⊢ ( 𝑛 = 𝑥 → ( ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) ) |
| 52 |
46 51
|
rspc2va |
⊢ ( ( ( 𝑦 ∈ 𝑍 ∧ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) → ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 53 |
41 28 52
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 54 |
26 40 53
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 55 |
|
oveq12 |
⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
| 56 |
|
oveq12 |
⊢ ( ( 𝑌 = ( 𝑦 · 𝐴 ) ∧ 𝑋 = ( 𝑥 · 𝐴 ) ) → ( 𝑌 + 𝑋 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 57 |
56
|
ancoms |
⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑌 + 𝑋 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 58 |
55 57
|
eqeq12d |
⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ↔ ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) ) |
| 59 |
54 58
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 60 |
59
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 ∃ 𝑦 ∈ 𝑍 ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 61 |
17 60
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 62 |
61
|
expd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) → ( ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 63 |
16 62
|
syl7bi |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 64 |
13 63
|
syld |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 65 |
64
|
com23 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 ∈ 𝐶 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 66 |
9 65
|
syld |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 → ( 𝑋 ∈ 𝐶 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 67 |
4 3 66
|
mp2d |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |