Metamath Proof Explorer


Theorem cycsubmcom

Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element A of the monoid. (Contributed by AV, 20-Jan-2024)

Ref Expression
Hypotheses cycsubmcom.b 𝐵 = ( Base ‘ 𝐺 )
cycsubmcom.t · = ( .g𝐺 )
cycsubmcom.f 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) )
cycsubmcom.c 𝐶 = ran 𝐹
cycsubmcom.p + = ( +g𝐺 )
Assertion cycsubmcom ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cycsubmcom.b 𝐵 = ( Base ‘ 𝐺 )
2 cycsubmcom.t · = ( .g𝐺 )
3 cycsubmcom.f 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) )
4 cycsubmcom.c 𝐶 = ran 𝐹
5 cycsubmcom.p + = ( +g𝐺 )
6 1 2 3 4 cycsubmel ( 𝑐𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) )
7 6 biimpi ( 𝑐𝐶 → ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) )
8 7 adantl ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) ∧ 𝑐𝐶 ) → ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) )
9 8 ralrimiva ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ∀ 𝑐𝐶𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) )
10 simplll ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ) ) → 𝐺 ∈ Mnd )
11 simprl ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ) ) → 𝑚 ∈ ℕ0 )
12 simprr ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℕ0 )
13 simpllr ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ) ) → 𝐴𝐵 )
14 1 2 5 mulgnn0dir ( ( 𝐺 ∈ Mnd ∧ ( 𝑚 ∈ ℕ0𝑛 ∈ ℕ0𝐴𝐵 ) ) → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) )
15 10 11 12 13 14 syl13anc ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ) ) → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) )
16 15 ralrimivva ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ∀ 𝑚 ∈ ℕ0𝑛 ∈ ℕ0 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) )
17 simprl ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑋𝐶 )
18 simprr ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) → 𝑌𝐶 )
19 nn0sscn 0 ⊆ ℂ
20 19 a1i ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ℕ0 ⊆ ℂ )
21 9 16 17 18 20 cyccom ( ( ( 𝐺 ∈ Mnd ∧ 𝐴𝐵 ) ∧ ( 𝑋𝐶𝑌𝐶 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )