Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubmcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
cycsubmcom.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
cycsubmcom.f |
⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) |
4 |
|
cycsubmcom.c |
⊢ 𝐶 = ran 𝐹 |
5 |
|
cycsubmcom.p |
⊢ + = ( +g ‘ 𝐺 ) |
6 |
1 2 3 4
|
cycsubmel |
⊢ ( 𝑐 ∈ 𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) ) |
7 |
6
|
biimpi |
⊢ ( 𝑐 ∈ 𝐶 → ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ 𝑐 ∈ 𝐶 ) → ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) ) |
9 |
8
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ∀ 𝑐 ∈ 𝐶 ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) ) |
10 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝐺 ∈ Mnd ) |
11 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑚 ∈ ℕ0 ) |
12 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℕ0 ) |
13 |
|
simpllr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝐴 ∈ 𝐵 ) |
14 |
1 2 5
|
mulgnn0dir |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
15 |
10 11 12 13 14
|
syl13anc |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
16 |
15
|
ralrimivva |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ∀ 𝑚 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
17 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐶 ) |
18 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ 𝐶 ) |
19 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
20 |
19
|
a1i |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ℕ0 ⊆ ℂ ) |
21 |
9 16 17 18 20
|
cyccom |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |