| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubmcom.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cycsubmcom.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | cycsubmcom.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  ·  𝐴 ) ) | 
						
							| 4 |  | cycsubmcom.c | ⊢ 𝐶  =  ran  𝐹 | 
						
							| 5 |  | cycsubmcom.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 | 1 2 3 4 | cycsubmel | ⊢ ( 𝑐  ∈  𝐶  ↔  ∃ 𝑖  ∈  ℕ0 𝑐  =  ( 𝑖  ·  𝐴 ) ) | 
						
							| 7 | 6 | biimpi | ⊢ ( 𝑐  ∈  𝐶  →  ∃ 𝑖  ∈  ℕ0 𝑐  =  ( 𝑖  ·  𝐴 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  ∧  𝑐  ∈  𝐶 )  →  ∃ 𝑖  ∈  ℕ0 𝑐  =  ( 𝑖  ·  𝐴 ) ) | 
						
							| 9 | 8 | ralrimiva | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  →  ∀ 𝑐  ∈  𝐶 ∃ 𝑖  ∈  ℕ0 𝑐  =  ( 𝑖  ·  𝐴 ) ) | 
						
							| 10 |  | simplll | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 11 |  | simprl | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 12 |  | simprr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 13 |  | simpllr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  →  𝐴  ∈  𝐵 ) | 
						
							| 14 | 1 2 5 | mulgnn0dir | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0  ∧  𝐴  ∈  𝐵 ) )  →  ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 15 | 10 11 12 13 14 | syl13anc | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 16 | 15 | ralrimivva | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  →  ∀ 𝑚  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( ( 𝑚  +  𝑛 )  ·  𝐴 )  =  ( ( 𝑚  ·  𝐴 )  +  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  →  𝑋  ∈  𝐶 ) | 
						
							| 18 |  | simprr | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  →  𝑌  ∈  𝐶 ) | 
						
							| 19 |  | nn0sscn | ⊢ ℕ0  ⊆  ℂ | 
						
							| 20 | 19 | a1i | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  →  ℕ0  ⊆  ℂ ) | 
						
							| 21 | 9 16 17 18 20 | cyccom | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝐵 )  ∧  ( 𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 ) )  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) |