| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
cycsubm.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
cycsubm.f |
⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) |
| 4 |
|
cycsubm.c |
⊢ 𝐶 = ran 𝐹 |
| 5 |
4
|
eleq2i |
⊢ ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ ran 𝐹 ) |
| 6 |
|
ovex |
⊢ ( 𝑥 · 𝐴 ) ∈ V |
| 7 |
6 3
|
fnmpti |
⊢ 𝐹 Fn ℕ0 |
| 8 |
|
fvelrnb |
⊢ ( 𝐹 Fn ℕ0 → ( 𝑋 ∈ ran 𝐹 ↔ ∃ 𝑖 ∈ ℕ0 ( 𝐹 ‘ 𝑖 ) = 𝑋 ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( 𝑋 ∈ ran 𝐹 ↔ ∃ 𝑖 ∈ ℕ0 ( 𝐹 ‘ 𝑖 ) = 𝑋 ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑖 → ( 𝑥 · 𝐴 ) = ( 𝑖 · 𝐴 ) ) |
| 11 |
|
ovex |
⊢ ( 𝑖 · 𝐴 ) ∈ V |
| 12 |
10 3 11
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝐹 ‘ 𝑖 ) = ( 𝑖 · 𝐴 ) ) |
| 13 |
12
|
eqeq1d |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝐹 ‘ 𝑖 ) = 𝑋 ↔ ( 𝑖 · 𝐴 ) = 𝑋 ) ) |
| 14 |
|
eqcom |
⊢ ( ( 𝑖 · 𝐴 ) = 𝑋 ↔ 𝑋 = ( 𝑖 · 𝐴 ) ) |
| 15 |
13 14
|
bitrdi |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝐹 ‘ 𝑖 ) = 𝑋 ↔ 𝑋 = ( 𝑖 · 𝐴 ) ) ) |
| 16 |
15
|
rexbiia |
⊢ ( ∃ 𝑖 ∈ ℕ0 ( 𝐹 ‘ 𝑖 ) = 𝑋 ↔ ∃ 𝑖 ∈ ℕ0 𝑋 = ( 𝑖 · 𝐴 ) ) |
| 17 |
5 9 16
|
3bitri |
⊢ ( 𝑋 ∈ 𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝑋 = ( 𝑖 · 𝐴 ) ) |