Metamath Proof Explorer


Theorem cycsubmel

Description: Characterization of an element of the set of nonnegative integer powers of an element A . Although this theorem holds for any class G , the definition of F is only meaningful if G is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses cycsubm.b 𝐵 = ( Base ‘ 𝐺 )
cycsubm.t · = ( .g𝐺 )
cycsubm.f 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) )
cycsubm.c 𝐶 = ran 𝐹
Assertion cycsubmel ( 𝑋𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝑋 = ( 𝑖 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 cycsubm.b 𝐵 = ( Base ‘ 𝐺 )
2 cycsubm.t · = ( .g𝐺 )
3 cycsubm.f 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) )
4 cycsubm.c 𝐶 = ran 𝐹
5 4 eleq2i ( 𝑋𝐶𝑋 ∈ ran 𝐹 )
6 ovex ( 𝑥 · 𝐴 ) ∈ V
7 6 3 fnmpti 𝐹 Fn ℕ0
8 fvelrnb ( 𝐹 Fn ℕ0 → ( 𝑋 ∈ ran 𝐹 ↔ ∃ 𝑖 ∈ ℕ0 ( 𝐹𝑖 ) = 𝑋 ) )
9 7 8 ax-mp ( 𝑋 ∈ ran 𝐹 ↔ ∃ 𝑖 ∈ ℕ0 ( 𝐹𝑖 ) = 𝑋 )
10 oveq1 ( 𝑥 = 𝑖 → ( 𝑥 · 𝐴 ) = ( 𝑖 · 𝐴 ) )
11 ovex ( 𝑖 · 𝐴 ) ∈ V
12 10 3 11 fvmpt ( 𝑖 ∈ ℕ0 → ( 𝐹𝑖 ) = ( 𝑖 · 𝐴 ) )
13 12 eqeq1d ( 𝑖 ∈ ℕ0 → ( ( 𝐹𝑖 ) = 𝑋 ↔ ( 𝑖 · 𝐴 ) = 𝑋 ) )
14 eqcom ( ( 𝑖 · 𝐴 ) = 𝑋𝑋 = ( 𝑖 · 𝐴 ) )
15 13 14 bitrdi ( 𝑖 ∈ ℕ0 → ( ( 𝐹𝑖 ) = 𝑋𝑋 = ( 𝑖 · 𝐴 ) ) )
16 15 rexbiia ( ∃ 𝑖 ∈ ℕ0 ( 𝐹𝑖 ) = 𝑋 ↔ ∃ 𝑖 ∈ ℕ0 𝑋 = ( 𝑖 · 𝐴 ) )
17 5 9 16 3bitri ( 𝑋𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝑋 = ( 𝑖 · 𝐴 ) )