Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubm.b |
|- B = ( Base ` G ) |
2 |
|
cycsubm.t |
|- .x. = ( .g ` G ) |
3 |
|
cycsubm.f |
|- F = ( x e. NN0 |-> ( x .x. A ) ) |
4 |
|
cycsubm.c |
|- C = ran F |
5 |
4
|
eleq2i |
|- ( X e. C <-> X e. ran F ) |
6 |
|
ovex |
|- ( x .x. A ) e. _V |
7 |
6 3
|
fnmpti |
|- F Fn NN0 |
8 |
|
fvelrnb |
|- ( F Fn NN0 -> ( X e. ran F <-> E. i e. NN0 ( F ` i ) = X ) ) |
9 |
7 8
|
ax-mp |
|- ( X e. ran F <-> E. i e. NN0 ( F ` i ) = X ) |
10 |
|
oveq1 |
|- ( x = i -> ( x .x. A ) = ( i .x. A ) ) |
11 |
|
ovex |
|- ( i .x. A ) e. _V |
12 |
10 3 11
|
fvmpt |
|- ( i e. NN0 -> ( F ` i ) = ( i .x. A ) ) |
13 |
12
|
eqeq1d |
|- ( i e. NN0 -> ( ( F ` i ) = X <-> ( i .x. A ) = X ) ) |
14 |
|
eqcom |
|- ( ( i .x. A ) = X <-> X = ( i .x. A ) ) |
15 |
13 14
|
bitrdi |
|- ( i e. NN0 -> ( ( F ` i ) = X <-> X = ( i .x. A ) ) ) |
16 |
15
|
rexbiia |
|- ( E. i e. NN0 ( F ` i ) = X <-> E. i e. NN0 X = ( i .x. A ) ) |
17 |
5 9 16
|
3bitri |
|- ( X e. C <-> E. i e. NN0 X = ( i .x. A ) ) |