Metamath Proof Explorer


Theorem dalem43

Description: Lemma for dath . Planes G H I and Y are different. (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalem38.m = ( meet ‘ 𝐾 )
dalem38.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem38.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem38.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem38.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
dalem38.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
dalem38.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
Assertion dalem43 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ≠ 𝑌 )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalem38.m = ( meet ‘ 𝐾 )
7 dalem38.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem38.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem38.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem38.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
11 dalem38.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
12 dalem38.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
13 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
14 13 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ Lat )
15 1 dalemkehl ( 𝜑𝐾 ∈ HL )
16 15 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ HL )
17 1 2 3 4 5 6 7 8 9 10 dalem23 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺𝐴 )
18 1 2 3 4 5 6 7 8 9 11 dalem29 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻𝐴 )
19 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
20 19 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
21 16 17 18 20 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
22 1 2 3 4 5 6 7 8 9 12 dalem34 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼𝐴 )
23 19 4 atbase ( 𝐼𝐴𝐼 ∈ ( Base ‘ 𝐾 ) )
24 22 23 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼 ∈ ( Base ‘ 𝐾 ) )
25 19 2 3 latlej2 ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐼 ∈ ( Base ‘ 𝐾 ) ) → 𝐼 ( ( 𝐺 𝐻 ) 𝐼 ) )
26 14 21 24 25 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼 ( ( 𝐺 𝐻 ) 𝐼 ) )
27 1 2 3 4 5 6 7 8 9 12 dalem35 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝐼 𝑌 )
28 nbrne1 ( ( 𝐼 ( ( 𝐺 𝐻 ) 𝐼 ) ∧ ¬ 𝐼 𝑌 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ≠ 𝑌 )
29 26 27 28 syl2anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ≠ 𝑌 )