Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem6.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
6 |
|
dalem6.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
7 |
|
dalem6.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
8 |
|
dalem6.w |
⊢ 𝑊 = ( 𝑌 ∨ 𝐶 ) |
9 |
1 2 3 4 6 7
|
dalemrot |
⊢ ( 𝜑 → ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ∧ ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) ) |
10 |
|
biid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ∧ ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ∧ ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) ) |
11 |
|
eqid |
⊢ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) |
12 |
|
eqid |
⊢ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∨ 𝐶 ) = ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∨ 𝐶 ) |
13 |
10 2 3 4 5 11 12
|
dalem5 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ∧ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑆 ) ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ∧ ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) ) → 𝑆 ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∨ 𝐶 ) ) |
14 |
9 13
|
syl |
⊢ ( 𝜑 → 𝑆 ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∨ 𝐶 ) ) |
15 |
1 3 4
|
dalemqrprot |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
16 |
6 15
|
eqtr4id |
⊢ ( 𝜑 → 𝑌 = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝜑 → ( 𝑌 ∨ 𝐶 ) = ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∨ 𝐶 ) ) |
18 |
8 17
|
eqtrid |
⊢ ( 𝜑 → 𝑊 = ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∨ 𝐶 ) ) |
19 |
14 18
|
breqtrrd |
⊢ ( 𝜑 → 𝑆 ≤ 𝑊 ) |