| Step | Hyp | Ref | Expression | 
						
							| 0 |  | carea | ⊢ area | 
						
							| 1 |  | vs | ⊢ 𝑠 | 
						
							| 2 |  | vt | ⊢ 𝑡 | 
						
							| 3 |  | cr | ⊢ ℝ | 
						
							| 4 | 3 3 | cxp | ⊢ ( ℝ  ×  ℝ ) | 
						
							| 5 | 4 | cpw | ⊢ 𝒫  ( ℝ  ×  ℝ ) | 
						
							| 6 |  | vx | ⊢ 𝑥 | 
						
							| 7 | 2 | cv | ⊢ 𝑡 | 
						
							| 8 | 6 | cv | ⊢ 𝑥 | 
						
							| 9 | 8 | csn | ⊢ { 𝑥 } | 
						
							| 10 | 7 9 | cima | ⊢ ( 𝑡  “  { 𝑥 } ) | 
						
							| 11 |  | cvol | ⊢ vol | 
						
							| 12 | 11 | ccnv | ⊢ ◡ vol | 
						
							| 13 | 12 3 | cima | ⊢ ( ◡ vol  “  ℝ ) | 
						
							| 14 | 10 13 | wcel | ⊢ ( 𝑡  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ ) | 
						
							| 15 | 14 6 3 | wral | ⊢ ∀ 𝑥  ∈  ℝ ( 𝑡  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ ) | 
						
							| 16 | 10 11 | cfv | ⊢ ( vol ‘ ( 𝑡  “  { 𝑥 } ) ) | 
						
							| 17 | 6 3 16 | cmpt | ⊢ ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑡  “  { 𝑥 } ) ) ) | 
						
							| 18 |  | cibl | ⊢ 𝐿1 | 
						
							| 19 | 17 18 | wcel | ⊢ ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑡  “  { 𝑥 } ) ) )  ∈  𝐿1 | 
						
							| 20 | 15 19 | wa | ⊢ ( ∀ 𝑥  ∈  ℝ ( 𝑡  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ )  ∧  ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑡  “  { 𝑥 } ) ) )  ∈  𝐿1 ) | 
						
							| 21 | 20 2 5 | crab | ⊢ { 𝑡  ∈  𝒫  ( ℝ  ×  ℝ )  ∣  ( ∀ 𝑥  ∈  ℝ ( 𝑡  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ )  ∧  ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑡  “  { 𝑥 } ) ) )  ∈  𝐿1 ) } | 
						
							| 22 | 1 | cv | ⊢ 𝑠 | 
						
							| 23 | 22 9 | cima | ⊢ ( 𝑠  “  { 𝑥 } ) | 
						
							| 24 | 23 11 | cfv | ⊢ ( vol ‘ ( 𝑠  “  { 𝑥 } ) ) | 
						
							| 25 | 6 3 24 | citg | ⊢ ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥 | 
						
							| 26 | 1 21 25 | cmpt | ⊢ ( 𝑠  ∈  { 𝑡  ∈  𝒫  ( ℝ  ×  ℝ )  ∣  ( ∀ 𝑥  ∈  ℝ ( 𝑡  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ )  ∧  ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑡  “  { 𝑥 } ) ) )  ∈  𝐿1 ) }  ↦  ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥 ) | 
						
							| 27 | 0 26 | wceq | ⊢ area  =  ( 𝑠  ∈  { 𝑡  ∈  𝒫  ( ℝ  ×  ℝ )  ∣  ( ∀ 𝑥  ∈  ℝ ( 𝑡  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ )  ∧  ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑡  “  { 𝑥 } ) ) )  ∈  𝐿1 ) }  ↦  ∫ ℝ ( vol ‘ ( 𝑠  “  { 𝑥 } ) )  d 𝑥 ) |