Step |
Hyp |
Ref |
Expression |
0 |
|
carea |
⊢ area |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
vt |
⊢ 𝑡 |
3 |
|
cr |
⊢ ℝ |
4 |
3 3
|
cxp |
⊢ ( ℝ × ℝ ) |
5 |
4
|
cpw |
⊢ 𝒫 ( ℝ × ℝ ) |
6 |
|
vx |
⊢ 𝑥 |
7 |
2
|
cv |
⊢ 𝑡 |
8 |
6
|
cv |
⊢ 𝑥 |
9 |
8
|
csn |
⊢ { 𝑥 } |
10 |
7 9
|
cima |
⊢ ( 𝑡 “ { 𝑥 } ) |
11 |
|
cvol |
⊢ vol |
12 |
11
|
ccnv |
⊢ ◡ vol |
13 |
12 3
|
cima |
⊢ ( ◡ vol “ ℝ ) |
14 |
10 13
|
wcel |
⊢ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) |
15 |
14 6 3
|
wral |
⊢ ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) |
16 |
10 11
|
cfv |
⊢ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) |
17 |
6 3 16
|
cmpt |
⊢ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) |
18 |
|
cibl |
⊢ 𝐿1 |
19 |
17 18
|
wcel |
⊢ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 |
20 |
15 19
|
wa |
⊢ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) |
21 |
20 2 5
|
crab |
⊢ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } |
22 |
1
|
cv |
⊢ 𝑠 |
23 |
22 9
|
cima |
⊢ ( 𝑠 “ { 𝑥 } ) |
24 |
23 11
|
cfv |
⊢ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) |
25 |
6 3 24
|
citg |
⊢ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 |
26 |
1 21 25
|
cmpt |
⊢ ( 𝑠 ∈ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) |
27 |
0 26
|
wceq |
⊢ area = ( 𝑠 ∈ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) |