| Step |
Hyp |
Ref |
Expression |
| 0 |
|
carea |
|- area |
| 1 |
|
vs |
|- s |
| 2 |
|
vt |
|- t |
| 3 |
|
cr |
|- RR |
| 4 |
3 3
|
cxp |
|- ( RR X. RR ) |
| 5 |
4
|
cpw |
|- ~P ( RR X. RR ) |
| 6 |
|
vx |
|- x |
| 7 |
2
|
cv |
|- t |
| 8 |
6
|
cv |
|- x |
| 9 |
8
|
csn |
|- { x } |
| 10 |
7 9
|
cima |
|- ( t " { x } ) |
| 11 |
|
cvol |
|- vol |
| 12 |
11
|
ccnv |
|- `' vol |
| 13 |
12 3
|
cima |
|- ( `' vol " RR ) |
| 14 |
10 13
|
wcel |
|- ( t " { x } ) e. ( `' vol " RR ) |
| 15 |
14 6 3
|
wral |
|- A. x e. RR ( t " { x } ) e. ( `' vol " RR ) |
| 16 |
10 11
|
cfv |
|- ( vol ` ( t " { x } ) ) |
| 17 |
6 3 16
|
cmpt |
|- ( x e. RR |-> ( vol ` ( t " { x } ) ) ) |
| 18 |
|
cibl |
|- L^1 |
| 19 |
17 18
|
wcel |
|- ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 |
| 20 |
15 19
|
wa |
|- ( A. x e. RR ( t " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 ) |
| 21 |
20 2 5
|
crab |
|- { t e. ~P ( RR X. RR ) | ( A. x e. RR ( t " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 ) } |
| 22 |
1
|
cv |
|- s |
| 23 |
22 9
|
cima |
|- ( s " { x } ) |
| 24 |
23 11
|
cfv |
|- ( vol ` ( s " { x } ) ) |
| 25 |
6 3 24
|
citg |
|- S. RR ( vol ` ( s " { x } ) ) _d x |
| 26 |
1 21 25
|
cmpt |
|- ( s e. { t e. ~P ( RR X. RR ) | ( A. x e. RR ( t " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 ) } |-> S. RR ( vol ` ( s " { x } ) ) _d x ) |
| 27 |
0 26
|
wceq |
|- area = ( s e. { t e. ~P ( RR X. RR ) | ( A. x e. RR ( t " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 ) } |-> S. RR ( vol ` ( s " { x } ) ) _d x ) |