| Step | Hyp | Ref | Expression | 
						
							| 0 |  | carea |  |-  area | 
						
							| 1 |  | vs |  |-  s | 
						
							| 2 |  | vt |  |-  t | 
						
							| 3 |  | cr |  |-  RR | 
						
							| 4 | 3 3 | cxp |  |-  ( RR X. RR ) | 
						
							| 5 | 4 | cpw |  |-  ~P ( RR X. RR ) | 
						
							| 6 |  | vx |  |-  x | 
						
							| 7 | 2 | cv |  |-  t | 
						
							| 8 | 6 | cv |  |-  x | 
						
							| 9 | 8 | csn |  |-  { x } | 
						
							| 10 | 7 9 | cima |  |-  ( t " { x } ) | 
						
							| 11 |  | cvol |  |-  vol | 
						
							| 12 | 11 | ccnv |  |-  `' vol | 
						
							| 13 | 12 3 | cima |  |-  ( `' vol " RR ) | 
						
							| 14 | 10 13 | wcel |  |-  ( t " { x } ) e. ( `' vol " RR ) | 
						
							| 15 | 14 6 3 | wral |  |-  A. x e. RR ( t " { x } ) e. ( `' vol " RR ) | 
						
							| 16 | 10 11 | cfv |  |-  ( vol ` ( t " { x } ) ) | 
						
							| 17 | 6 3 16 | cmpt |  |-  ( x e. RR |-> ( vol ` ( t " { x } ) ) ) | 
						
							| 18 |  | cibl |  |-  L^1 | 
						
							| 19 | 17 18 | wcel |  |-  ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 | 
						
							| 20 | 15 19 | wa |  |-  ( A. x e. RR ( t " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 ) | 
						
							| 21 | 20 2 5 | crab |  |-  { t e. ~P ( RR X. RR ) | ( A. x e. RR ( t " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 ) } | 
						
							| 22 | 1 | cv |  |-  s | 
						
							| 23 | 22 9 | cima |  |-  ( s " { x } ) | 
						
							| 24 | 23 11 | cfv |  |-  ( vol ` ( s " { x } ) ) | 
						
							| 25 | 6 3 24 | citg |  |-  S. RR ( vol ` ( s " { x } ) ) _d x | 
						
							| 26 | 1 21 25 | cmpt |  |-  ( s e. { t e. ~P ( RR X. RR ) | ( A. x e. RR ( t " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 ) } |-> S. RR ( vol ` ( s " { x } ) ) _d x ) | 
						
							| 27 | 0 26 | wceq |  |-  area = ( s e. { t e. ~P ( RR X. RR ) | ( A. x e. RR ( t " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( t " { x } ) ) ) e. L^1 ) } |-> S. RR ( vol ` ( s " { x } ) ) _d x ) |