Step |
Hyp |
Ref |
Expression |
1 |
|
itgex |
⊢ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ V |
2 |
|
df-area |
⊢ area = ( 𝑠 ∈ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ) |
3 |
1 2
|
dmmpti |
⊢ dom area = { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } |
4 |
3
|
eleq2i |
⊢ ( 𝐴 ∈ dom area ↔ 𝐴 ∈ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ) |
5 |
|
imaeq1 |
⊢ ( 𝑡 = 𝐴 → ( 𝑡 “ { 𝑥 } ) = ( 𝐴 “ { 𝑥 } ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑡 = 𝐴 → ( ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ↔ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑡 = 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) ) |
8 |
5
|
fveq2d |
⊢ ( 𝑡 = 𝐴 → ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) = ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) |
9 |
8
|
mpteq2dv |
⊢ ( 𝑡 = 𝐴 → ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) = ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑡 = 𝐴 → ( ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ↔ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) |
11 |
7 10
|
anbi12d |
⊢ ( 𝑡 = 𝐴 → ( ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ↔ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) ) |
12 |
11
|
elrab |
⊢ ( 𝐴 ∈ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ↔ ( 𝐴 ∈ 𝒫 ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) ) |
13 |
|
reex |
⊢ ℝ ∈ V |
14 |
13 13
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
15 |
14
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ( ℝ × ℝ ) ↔ 𝐴 ⊆ ( ℝ × ℝ ) ) |
16 |
15
|
anbi1i |
⊢ ( ( 𝐴 ∈ 𝒫 ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) ) |
17 |
|
3anass |
⊢ ( ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) ) |
18 |
16 17
|
bitr4i |
⊢ ( ( 𝐴 ∈ 𝒫 ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) |
19 |
4 12 18
|
3bitri |
⊢ ( 𝐴 ∈ dom area ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) |