Metamath Proof Explorer


Theorem dmarea

Description: The domain of the area function is the set of finitely measurable subsets of RR X. RR . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion dmarea ( 𝐴 ∈ dom area ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) )

Proof

Step Hyp Ref Expression
1 itgex ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 ∈ V
2 df-area area = ( 𝑠 ∈ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ↦ ∫ ℝ ( vol ‘ ( 𝑠 “ { 𝑥 } ) ) d 𝑥 )
3 1 2 dmmpti dom area = { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) }
4 3 eleq2i ( 𝐴 ∈ dom area ↔ 𝐴 ∈ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } )
5 imaeq1 ( 𝑡 = 𝐴 → ( 𝑡 “ { 𝑥 } ) = ( 𝐴 “ { 𝑥 } ) )
6 5 eleq1d ( 𝑡 = 𝐴 → ( ( 𝑡 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ↔ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ) )
7 6 ralbidv ( 𝑡 = 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ) )
8 5 fveq2d ( 𝑡 = 𝐴 → ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) = ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) )
9 8 mpteq2dv ( 𝑡 = 𝐴 → ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) = ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) )
10 9 eleq1d ( 𝑡 = 𝐴 → ( ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ↔ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) )
11 7 10 anbi12d ( 𝑡 = 𝐴 → ( ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ↔ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) )
12 11 elrab ( 𝐴 ∈ { 𝑡 ∈ 𝒫 ( ℝ × ℝ ) ∣ ( ∀ 𝑥 ∈ ℝ ( 𝑡 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑡 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) } ↔ ( 𝐴 ∈ 𝒫 ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) )
13 reex ℝ ∈ V
14 13 13 xpex ( ℝ × ℝ ) ∈ V
15 14 elpw2 ( 𝐴 ∈ 𝒫 ( ℝ × ℝ ) ↔ 𝐴 ⊆ ( ℝ × ℝ ) )
16 15 anbi1i ( ( 𝐴 ∈ 𝒫 ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) )
17 3anass ( ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) )
18 16 17 bitr4i ( ( 𝐴 ∈ 𝒫 ( ℝ × ℝ ) ∧ ( ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) )
19 4 12 18 3bitri ( 𝐴 ∈ dom area ↔ ( 𝐴 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝐴 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) )