Metamath Proof Explorer


Theorem areambl

Description: The fibers of a measurable region are finitely measurable subsets of RR . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion areambl ( ( 𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ ) → ( ( 𝑆 “ { 𝐴 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑆 “ { 𝐴 } ) ) ∈ ℝ ) )

Proof

Step Hyp Ref Expression
1 dmarea ( 𝑆 ∈ dom area ↔ ( 𝑆 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) )
2 1 simp2bi ( 𝑆 ∈ dom area → ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( vol “ ℝ ) )
3 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
4 3 imaeq2d ( 𝑥 = 𝐴 → ( 𝑆 “ { 𝑥 } ) = ( 𝑆 “ { 𝐴 } ) )
5 4 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑆 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ↔ ( 𝑆 “ { 𝐴 } ) ∈ ( vol “ ℝ ) ) )
6 5 rspccva ( ( ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( vol “ ℝ ) ∧ 𝐴 ∈ ℝ ) → ( 𝑆 “ { 𝐴 } ) ∈ ( vol “ ℝ ) )
7 2 6 sylan ( ( 𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ ) → ( 𝑆 “ { 𝐴 } ) ∈ ( vol “ ℝ ) )
8 volf vol : dom vol ⟶ ( 0 [,] +∞ )
9 ffn ( vol : dom vol ⟶ ( 0 [,] +∞ ) → vol Fn dom vol )
10 elpreima ( vol Fn dom vol → ( ( 𝑆 “ { 𝐴 } ) ∈ ( vol “ ℝ ) ↔ ( ( 𝑆 “ { 𝐴 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑆 “ { 𝐴 } ) ) ∈ ℝ ) ) )
11 8 9 10 mp2b ( ( 𝑆 “ { 𝐴 } ) ∈ ( vol “ ℝ ) ↔ ( ( 𝑆 “ { 𝐴 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑆 “ { 𝐴 } ) ) ∈ ℝ ) )
12 7 11 sylib ( ( 𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ ) → ( ( 𝑆 “ { 𝐴 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑆 “ { 𝐴 } ) ) ∈ ℝ ) )