Step |
Hyp |
Ref |
Expression |
1 |
|
dmarea |
⊢ ( 𝑆 ∈ dom area ↔ ( 𝑆 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) |
2 |
1
|
simp2bi |
⊢ ( 𝑆 ∈ dom area → ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) |
3 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
4 |
3
|
imaeq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑆 “ { 𝑥 } ) = ( 𝑆 “ { 𝐴 } ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ↔ ( 𝑆 “ { 𝐴 } ) ∈ ( ◡ vol “ ℝ ) ) ) |
6 |
5
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ 𝐴 ∈ ℝ ) → ( 𝑆 “ { 𝐴 } ) ∈ ( ◡ vol “ ℝ ) ) |
7 |
2 6
|
sylan |
⊢ ( ( 𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ ) → ( 𝑆 “ { 𝐴 } ) ∈ ( ◡ vol “ ℝ ) ) |
8 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
9 |
|
ffn |
⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → vol Fn dom vol ) |
10 |
|
elpreima |
⊢ ( vol Fn dom vol → ( ( 𝑆 “ { 𝐴 } ) ∈ ( ◡ vol “ ℝ ) ↔ ( ( 𝑆 “ { 𝐴 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑆 “ { 𝐴 } ) ) ∈ ℝ ) ) ) |
11 |
8 9 10
|
mp2b |
⊢ ( ( 𝑆 “ { 𝐴 } ) ∈ ( ◡ vol “ ℝ ) ↔ ( ( 𝑆 “ { 𝐴 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑆 “ { 𝐴 } ) ) ∈ ℝ ) ) |
12 |
7 11
|
sylib |
⊢ ( ( 𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ ) → ( ( 𝑆 “ { 𝐴 } ) ∈ dom vol ∧ ( vol ‘ ( 𝑆 “ { 𝐴 } ) ) ∈ ℝ ) ) |