| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmarea | ⊢ ( 𝑆  ∈  dom  area  ↔  ( 𝑆  ⊆  ( ℝ  ×  ℝ )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑆  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ )  ∧  ( 𝑥  ∈  ℝ  ↦  ( vol ‘ ( 𝑆  “  { 𝑥 } ) ) )  ∈  𝐿1 ) ) | 
						
							| 2 | 1 | simp2bi | ⊢ ( 𝑆  ∈  dom  area  →  ∀ 𝑥  ∈  ℝ ( 𝑆  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ ) ) | 
						
							| 3 |  | sneq | ⊢ ( 𝑥  =  𝐴  →  { 𝑥 }  =  { 𝐴 } ) | 
						
							| 4 | 3 | imaeq2d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑆  “  { 𝑥 } )  =  ( 𝑆  “  { 𝐴 } ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑆  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ )  ↔  ( 𝑆  “  { 𝐴 } )  ∈  ( ◡ vol  “  ℝ ) ) ) | 
						
							| 6 | 5 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ℝ ( 𝑆  “  { 𝑥 } )  ∈  ( ◡ vol  “  ℝ )  ∧  𝐴  ∈  ℝ )  →  ( 𝑆  “  { 𝐴 } )  ∈  ( ◡ vol  “  ℝ ) ) | 
						
							| 7 | 2 6 | sylan | ⊢ ( ( 𝑆  ∈  dom  area  ∧  𝐴  ∈  ℝ )  →  ( 𝑆  “  { 𝐴 } )  ∈  ( ◡ vol  “  ℝ ) ) | 
						
							| 8 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 9 |  | ffn | ⊢ ( vol : dom  vol ⟶ ( 0 [,] +∞ )  →  vol  Fn  dom  vol ) | 
						
							| 10 |  | elpreima | ⊢ ( vol  Fn  dom  vol  →  ( ( 𝑆  “  { 𝐴 } )  ∈  ( ◡ vol  “  ℝ )  ↔  ( ( 𝑆  “  { 𝐴 } )  ∈  dom  vol  ∧  ( vol ‘ ( 𝑆  “  { 𝐴 } ) )  ∈  ℝ ) ) ) | 
						
							| 11 | 8 9 10 | mp2b | ⊢ ( ( 𝑆  “  { 𝐴 } )  ∈  ( ◡ vol  “  ℝ )  ↔  ( ( 𝑆  “  { 𝐴 } )  ∈  dom  vol  ∧  ( vol ‘ ( 𝑆  “  { 𝐴 } ) )  ∈  ℝ ) ) | 
						
							| 12 | 7 11 | sylib | ⊢ ( ( 𝑆  ∈  dom  area  ∧  𝐴  ∈  ℝ )  →  ( ( 𝑆  “  { 𝐴 } )  ∈  dom  vol  ∧  ( vol ‘ ( 𝑆  “  { 𝐴 } ) )  ∈  ℝ ) ) |