Metamath Proof Explorer


Theorem areambl

Description: The fibers of a measurable region are finitely measurable subsets of RR . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion areambl S dom area A S A dom vol vol S A

Proof

Step Hyp Ref Expression
1 dmarea S dom area S 2 x S x vol -1 x vol S x 𝐿 1
2 1 simp2bi S dom area x S x vol -1
3 sneq x = A x = A
4 3 imaeq2d x = A S x = S A
5 4 eleq1d x = A S x vol -1 S A vol -1
6 5 rspccva x S x vol -1 A S A vol -1
7 2 6 sylan S dom area A S A vol -1
8 volf vol : dom vol 0 +∞
9 ffn vol : dom vol 0 +∞ vol Fn dom vol
10 elpreima vol Fn dom vol S A vol -1 S A dom vol vol S A
11 8 9 10 mp2b S A vol -1 S A dom vol vol S A
12 7 11 sylib S dom area A S A dom vol vol S A