| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmarea |  |-  ( S e. dom area <-> ( S C_ ( RR X. RR ) /\ A. x e. RR ( S " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( S " { x } ) ) ) e. L^1 ) ) | 
						
							| 2 | 1 | simp2bi |  |-  ( S e. dom area -> A. x e. RR ( S " { x } ) e. ( `' vol " RR ) ) | 
						
							| 3 |  | sneq |  |-  ( x = A -> { x } = { A } ) | 
						
							| 4 | 3 | imaeq2d |  |-  ( x = A -> ( S " { x } ) = ( S " { A } ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( x = A -> ( ( S " { x } ) e. ( `' vol " RR ) <-> ( S " { A } ) e. ( `' vol " RR ) ) ) | 
						
							| 6 | 5 | rspccva |  |-  ( ( A. x e. RR ( S " { x } ) e. ( `' vol " RR ) /\ A e. RR ) -> ( S " { A } ) e. ( `' vol " RR ) ) | 
						
							| 7 | 2 6 | sylan |  |-  ( ( S e. dom area /\ A e. RR ) -> ( S " { A } ) e. ( `' vol " RR ) ) | 
						
							| 8 |  | volf |  |-  vol : dom vol --> ( 0 [,] +oo ) | 
						
							| 9 |  | ffn |  |-  ( vol : dom vol --> ( 0 [,] +oo ) -> vol Fn dom vol ) | 
						
							| 10 |  | elpreima |  |-  ( vol Fn dom vol -> ( ( S " { A } ) e. ( `' vol " RR ) <-> ( ( S " { A } ) e. dom vol /\ ( vol ` ( S " { A } ) ) e. RR ) ) ) | 
						
							| 11 | 8 9 10 | mp2b |  |-  ( ( S " { A } ) e. ( `' vol " RR ) <-> ( ( S " { A } ) e. dom vol /\ ( vol ` ( S " { A } ) ) e. RR ) ) | 
						
							| 12 | 7 11 | sylib |  |-  ( ( S e. dom area /\ A e. RR ) -> ( ( S " { A } ) e. dom vol /\ ( vol ` ( S " { A } ) ) e. RR ) ) |