Step |
Hyp |
Ref |
Expression |
1 |
|
dmarea |
|- ( S e. dom area <-> ( S C_ ( RR X. RR ) /\ A. x e. RR ( S " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( S " { x } ) ) ) e. L^1 ) ) |
2 |
1
|
simp2bi |
|- ( S e. dom area -> A. x e. RR ( S " { x } ) e. ( `' vol " RR ) ) |
3 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
4 |
3
|
imaeq2d |
|- ( x = A -> ( S " { x } ) = ( S " { A } ) ) |
5 |
4
|
eleq1d |
|- ( x = A -> ( ( S " { x } ) e. ( `' vol " RR ) <-> ( S " { A } ) e. ( `' vol " RR ) ) ) |
6 |
5
|
rspccva |
|- ( ( A. x e. RR ( S " { x } ) e. ( `' vol " RR ) /\ A e. RR ) -> ( S " { A } ) e. ( `' vol " RR ) ) |
7 |
2 6
|
sylan |
|- ( ( S e. dom area /\ A e. RR ) -> ( S " { A } ) e. ( `' vol " RR ) ) |
8 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
9 |
|
ffn |
|- ( vol : dom vol --> ( 0 [,] +oo ) -> vol Fn dom vol ) |
10 |
|
elpreima |
|- ( vol Fn dom vol -> ( ( S " { A } ) e. ( `' vol " RR ) <-> ( ( S " { A } ) e. dom vol /\ ( vol ` ( S " { A } ) ) e. RR ) ) ) |
11 |
8 9 10
|
mp2b |
|- ( ( S " { A } ) e. ( `' vol " RR ) <-> ( ( S " { A } ) e. dom vol /\ ( vol ` ( S " { A } ) ) e. RR ) ) |
12 |
7 11
|
sylib |
|- ( ( S e. dom area /\ A e. RR ) -> ( ( S " { A } ) e. dom vol /\ ( vol ` ( S " { A } ) ) e. RR ) ) |