Metamath Proof Explorer


Theorem dmarea

Description: The domain of the area function is the set of finitely measurable subsets of RR X. RR . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion dmarea AdomareaA2xAxvol-1xvolAx𝐿1

Proof

Step Hyp Ref Expression
1 itgex volsxdxV
2 df-area area=st𝒫2|xtxvol-1xvoltx𝐿1volsxdx
3 1 2 dmmpti domarea=t𝒫2|xtxvol-1xvoltx𝐿1
4 3 eleq2i AdomareaAt𝒫2|xtxvol-1xvoltx𝐿1
5 imaeq1 t=Atx=Ax
6 5 eleq1d t=Atxvol-1Axvol-1
7 6 ralbidv t=Axtxvol-1xAxvol-1
8 5 fveq2d t=Avoltx=volAx
9 8 mpteq2dv t=Axvoltx=xvolAx
10 9 eleq1d t=Axvoltx𝐿1xvolAx𝐿1
11 7 10 anbi12d t=Axtxvol-1xvoltx𝐿1xAxvol-1xvolAx𝐿1
12 11 elrab At𝒫2|xtxvol-1xvoltx𝐿1A𝒫2xAxvol-1xvolAx𝐿1
13 reex V
14 13 13 xpex 2V
15 14 elpw2 A𝒫2A2
16 15 anbi1i A𝒫2xAxvol-1xvolAx𝐿1A2xAxvol-1xvolAx𝐿1
17 3anass A2xAxvol-1xvolAx𝐿1A2xAxvol-1xvolAx𝐿1
18 16 17 bitr4i A𝒫2xAxvol-1xvolAx𝐿1A2xAxvol-1xvolAx𝐿1
19 4 12 18 3bitri AdomareaA2xAxvol-1xvolAx𝐿1