Step |
Hyp |
Ref |
Expression |
0 |
|
chdma1 |
⊢ HDMap1 |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
va |
⊢ 𝑎 |
8 |
|
cdvh |
⊢ DVecH |
9 |
5 8
|
cfv |
⊢ ( DVecH ‘ 𝑘 ) |
10 |
3
|
cv |
⊢ 𝑤 |
11 |
10 9
|
cfv |
⊢ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) |
12 |
|
vu |
⊢ 𝑢 |
13 |
|
cbs |
⊢ Base |
14 |
12
|
cv |
⊢ 𝑢 |
15 |
14 13
|
cfv |
⊢ ( Base ‘ 𝑢 ) |
16 |
|
vv |
⊢ 𝑣 |
17 |
|
clspn |
⊢ LSpan |
18 |
14 17
|
cfv |
⊢ ( LSpan ‘ 𝑢 ) |
19 |
|
vn |
⊢ 𝑛 |
20 |
|
clcd |
⊢ LCDual |
21 |
5 20
|
cfv |
⊢ ( LCDual ‘ 𝑘 ) |
22 |
10 21
|
cfv |
⊢ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) |
23 |
|
vc |
⊢ 𝑐 |
24 |
23
|
cv |
⊢ 𝑐 |
25 |
24 13
|
cfv |
⊢ ( Base ‘ 𝑐 ) |
26 |
|
vd |
⊢ 𝑑 |
27 |
24 17
|
cfv |
⊢ ( LSpan ‘ 𝑐 ) |
28 |
|
vj |
⊢ 𝑗 |
29 |
|
cmpd |
⊢ mapd |
30 |
5 29
|
cfv |
⊢ ( mapd ‘ 𝑘 ) |
31 |
10 30
|
cfv |
⊢ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) |
32 |
|
vm |
⊢ 𝑚 |
33 |
7
|
cv |
⊢ 𝑎 |
34 |
|
vx |
⊢ 𝑥 |
35 |
16
|
cv |
⊢ 𝑣 |
36 |
26
|
cv |
⊢ 𝑑 |
37 |
35 36
|
cxp |
⊢ ( 𝑣 × 𝑑 ) |
38 |
37 35
|
cxp |
⊢ ( ( 𝑣 × 𝑑 ) × 𝑣 ) |
39 |
|
c2nd |
⊢ 2nd |
40 |
34
|
cv |
⊢ 𝑥 |
41 |
40 39
|
cfv |
⊢ ( 2nd ‘ 𝑥 ) |
42 |
|
c0g |
⊢ 0g |
43 |
14 42
|
cfv |
⊢ ( 0g ‘ 𝑢 ) |
44 |
41 43
|
wceq |
⊢ ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) |
45 |
24 42
|
cfv |
⊢ ( 0g ‘ 𝑐 ) |
46 |
|
vh |
⊢ ℎ |
47 |
32
|
cv |
⊢ 𝑚 |
48 |
19
|
cv |
⊢ 𝑛 |
49 |
41
|
csn |
⊢ { ( 2nd ‘ 𝑥 ) } |
50 |
49 48
|
cfv |
⊢ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) |
51 |
50 47
|
cfv |
⊢ ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) |
52 |
28
|
cv |
⊢ 𝑗 |
53 |
46
|
cv |
⊢ ℎ |
54 |
53
|
csn |
⊢ { ℎ } |
55 |
54 52
|
cfv |
⊢ ( 𝑗 ‘ { ℎ } ) |
56 |
51 55
|
wceq |
⊢ ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) |
57 |
|
c1st |
⊢ 1st |
58 |
40 57
|
cfv |
⊢ ( 1st ‘ 𝑥 ) |
59 |
58 57
|
cfv |
⊢ ( 1st ‘ ( 1st ‘ 𝑥 ) ) |
60 |
|
csg |
⊢ -g |
61 |
14 60
|
cfv |
⊢ ( -g ‘ 𝑢 ) |
62 |
59 41 61
|
co |
⊢ ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) |
63 |
62
|
csn |
⊢ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } |
64 |
63 48
|
cfv |
⊢ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) |
65 |
64 47
|
cfv |
⊢ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) |
66 |
58 39
|
cfv |
⊢ ( 2nd ‘ ( 1st ‘ 𝑥 ) ) |
67 |
24 60
|
cfv |
⊢ ( -g ‘ 𝑐 ) |
68 |
66 53 67
|
co |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) |
69 |
68
|
csn |
⊢ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } |
70 |
69 52
|
cfv |
⊢ ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) |
71 |
65 70
|
wceq |
⊢ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) |
72 |
56 71
|
wa |
⊢ ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) |
73 |
72 46 36
|
crio |
⊢ ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) |
74 |
44 45 73
|
cif |
⊢ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) |
75 |
34 38 74
|
cmpt |
⊢ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
76 |
33 75
|
wcel |
⊢ 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
77 |
76 32 31
|
wsbc |
⊢ [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
78 |
77 28 27
|
wsbc |
⊢ [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
79 |
78 26 25
|
wsbc |
⊢ [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
80 |
79 23 22
|
wsbc |
⊢ [ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) / 𝑐 ] [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
81 |
80 19 18
|
wsbc |
⊢ [ ( LSpan ‘ 𝑢 ) / 𝑛 ] [ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) / 𝑐 ] [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
82 |
81 16 15
|
wsbc |
⊢ [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( LSpan ‘ 𝑢 ) / 𝑛 ] [ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) / 𝑐 ] [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
83 |
82 12 11
|
wsbc |
⊢ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( LSpan ‘ 𝑢 ) / 𝑛 ] [ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) / 𝑐 ] [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) |
84 |
83 7
|
cab |
⊢ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( LSpan ‘ 𝑢 ) / 𝑛 ] [ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) / 𝑐 ] [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) } |
85 |
3 6 84
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( LSpan ‘ 𝑢 ) / 𝑛 ] [ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) / 𝑐 ] [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) } ) |
86 |
1 2 85
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( LSpan ‘ 𝑢 ) / 𝑛 ] [ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) / 𝑐 ] [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) } ) ) |
87 |
0 86
|
wceq |
⊢ HDMap1 = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( LSpan ‘ 𝑢 ) / 𝑛 ] [ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) / 𝑐 ] [ ( Base ‘ 𝑐 ) / 𝑑 ] [ ( LSpan ‘ 𝑐 ) / 𝑗 ] [ ( ( mapd ‘ 𝑘 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ ( ( 𝑣 × 𝑑 ) × 𝑣 ) ↦ if ( ( 2nd ‘ 𝑥 ) = ( 0g ‘ 𝑢 ) , ( 0g ‘ 𝑐 ) , ( ℩ ℎ ∈ 𝑑 ( ( 𝑚 ‘ ( 𝑛 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝑗 ‘ { ℎ } ) ∧ ( 𝑚 ‘ ( 𝑛 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑢 ) ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑗 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) ( -g ‘ 𝑐 ) ℎ ) } ) ) ) ) ) } ) ) |