Step |
Hyp |
Ref |
Expression |
0 |
|
chdma1 |
|- HDMap1 |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
va |
|- a |
8 |
|
cdvh |
|- DVecH |
9 |
5 8
|
cfv |
|- ( DVecH ` k ) |
10 |
3
|
cv |
|- w |
11 |
10 9
|
cfv |
|- ( ( DVecH ` k ) ` w ) |
12 |
|
vu |
|- u |
13 |
|
cbs |
|- Base |
14 |
12
|
cv |
|- u |
15 |
14 13
|
cfv |
|- ( Base ` u ) |
16 |
|
vv |
|- v |
17 |
|
clspn |
|- LSpan |
18 |
14 17
|
cfv |
|- ( LSpan ` u ) |
19 |
|
vn |
|- n |
20 |
|
clcd |
|- LCDual |
21 |
5 20
|
cfv |
|- ( LCDual ` k ) |
22 |
10 21
|
cfv |
|- ( ( LCDual ` k ) ` w ) |
23 |
|
vc |
|- c |
24 |
23
|
cv |
|- c |
25 |
24 13
|
cfv |
|- ( Base ` c ) |
26 |
|
vd |
|- d |
27 |
24 17
|
cfv |
|- ( LSpan ` c ) |
28 |
|
vj |
|- j |
29 |
|
cmpd |
|- mapd |
30 |
5 29
|
cfv |
|- ( mapd ` k ) |
31 |
10 30
|
cfv |
|- ( ( mapd ` k ) ` w ) |
32 |
|
vm |
|- m |
33 |
7
|
cv |
|- a |
34 |
|
vx |
|- x |
35 |
16
|
cv |
|- v |
36 |
26
|
cv |
|- d |
37 |
35 36
|
cxp |
|- ( v X. d ) |
38 |
37 35
|
cxp |
|- ( ( v X. d ) X. v ) |
39 |
|
c2nd |
|- 2nd |
40 |
34
|
cv |
|- x |
41 |
40 39
|
cfv |
|- ( 2nd ` x ) |
42 |
|
c0g |
|- 0g |
43 |
14 42
|
cfv |
|- ( 0g ` u ) |
44 |
41 43
|
wceq |
|- ( 2nd ` x ) = ( 0g ` u ) |
45 |
24 42
|
cfv |
|- ( 0g ` c ) |
46 |
|
vh |
|- h |
47 |
32
|
cv |
|- m |
48 |
19
|
cv |
|- n |
49 |
41
|
csn |
|- { ( 2nd ` x ) } |
50 |
49 48
|
cfv |
|- ( n ` { ( 2nd ` x ) } ) |
51 |
50 47
|
cfv |
|- ( m ` ( n ` { ( 2nd ` x ) } ) ) |
52 |
28
|
cv |
|- j |
53 |
46
|
cv |
|- h |
54 |
53
|
csn |
|- { h } |
55 |
54 52
|
cfv |
|- ( j ` { h } ) |
56 |
51 55
|
wceq |
|- ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) |
57 |
|
c1st |
|- 1st |
58 |
40 57
|
cfv |
|- ( 1st ` x ) |
59 |
58 57
|
cfv |
|- ( 1st ` ( 1st ` x ) ) |
60 |
|
csg |
|- -g |
61 |
14 60
|
cfv |
|- ( -g ` u ) |
62 |
59 41 61
|
co |
|- ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) |
63 |
62
|
csn |
|- { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } |
64 |
63 48
|
cfv |
|- ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) |
65 |
64 47
|
cfv |
|- ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) |
66 |
58 39
|
cfv |
|- ( 2nd ` ( 1st ` x ) ) |
67 |
24 60
|
cfv |
|- ( -g ` c ) |
68 |
66 53 67
|
co |
|- ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) |
69 |
68
|
csn |
|- { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } |
70 |
69 52
|
cfv |
|- ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) |
71 |
65 70
|
wceq |
|- ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) |
72 |
56 71
|
wa |
|- ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) |
73 |
72 46 36
|
crio |
|- ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) |
74 |
44 45 73
|
cif |
|- if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) |
75 |
34 38 74
|
cmpt |
|- ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
76 |
33 75
|
wcel |
|- a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
77 |
76 32 31
|
wsbc |
|- [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
78 |
77 28 27
|
wsbc |
|- [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
79 |
78 26 25
|
wsbc |
|- [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
80 |
79 23 22
|
wsbc |
|- [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
81 |
80 19 18
|
wsbc |
|- [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
82 |
81 16 15
|
wsbc |
|- [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
83 |
82 12 11
|
wsbc |
|- [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
84 |
83 7
|
cab |
|- { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } |
85 |
3 6 84
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) |
86 |
1 2 85
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ) |
87 |
0 86
|
wceq |
|- HDMap1 = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ) |