| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chdma1 |
|- HDMap1 |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vw |
|- w |
| 4 |
|
clh |
|- LHyp |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
| 7 |
|
va |
|- a |
| 8 |
|
cdvh |
|- DVecH |
| 9 |
5 8
|
cfv |
|- ( DVecH ` k ) |
| 10 |
3
|
cv |
|- w |
| 11 |
10 9
|
cfv |
|- ( ( DVecH ` k ) ` w ) |
| 12 |
|
vu |
|- u |
| 13 |
|
cbs |
|- Base |
| 14 |
12
|
cv |
|- u |
| 15 |
14 13
|
cfv |
|- ( Base ` u ) |
| 16 |
|
vv |
|- v |
| 17 |
|
clspn |
|- LSpan |
| 18 |
14 17
|
cfv |
|- ( LSpan ` u ) |
| 19 |
|
vn |
|- n |
| 20 |
|
clcd |
|- LCDual |
| 21 |
5 20
|
cfv |
|- ( LCDual ` k ) |
| 22 |
10 21
|
cfv |
|- ( ( LCDual ` k ) ` w ) |
| 23 |
|
vc |
|- c |
| 24 |
23
|
cv |
|- c |
| 25 |
24 13
|
cfv |
|- ( Base ` c ) |
| 26 |
|
vd |
|- d |
| 27 |
24 17
|
cfv |
|- ( LSpan ` c ) |
| 28 |
|
vj |
|- j |
| 29 |
|
cmpd |
|- mapd |
| 30 |
5 29
|
cfv |
|- ( mapd ` k ) |
| 31 |
10 30
|
cfv |
|- ( ( mapd ` k ) ` w ) |
| 32 |
|
vm |
|- m |
| 33 |
7
|
cv |
|- a |
| 34 |
|
vx |
|- x |
| 35 |
16
|
cv |
|- v |
| 36 |
26
|
cv |
|- d |
| 37 |
35 36
|
cxp |
|- ( v X. d ) |
| 38 |
37 35
|
cxp |
|- ( ( v X. d ) X. v ) |
| 39 |
|
c2nd |
|- 2nd |
| 40 |
34
|
cv |
|- x |
| 41 |
40 39
|
cfv |
|- ( 2nd ` x ) |
| 42 |
|
c0g |
|- 0g |
| 43 |
14 42
|
cfv |
|- ( 0g ` u ) |
| 44 |
41 43
|
wceq |
|- ( 2nd ` x ) = ( 0g ` u ) |
| 45 |
24 42
|
cfv |
|- ( 0g ` c ) |
| 46 |
|
vh |
|- h |
| 47 |
32
|
cv |
|- m |
| 48 |
19
|
cv |
|- n |
| 49 |
41
|
csn |
|- { ( 2nd ` x ) } |
| 50 |
49 48
|
cfv |
|- ( n ` { ( 2nd ` x ) } ) |
| 51 |
50 47
|
cfv |
|- ( m ` ( n ` { ( 2nd ` x ) } ) ) |
| 52 |
28
|
cv |
|- j |
| 53 |
46
|
cv |
|- h |
| 54 |
53
|
csn |
|- { h } |
| 55 |
54 52
|
cfv |
|- ( j ` { h } ) |
| 56 |
51 55
|
wceq |
|- ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) |
| 57 |
|
c1st |
|- 1st |
| 58 |
40 57
|
cfv |
|- ( 1st ` x ) |
| 59 |
58 57
|
cfv |
|- ( 1st ` ( 1st ` x ) ) |
| 60 |
|
csg |
|- -g |
| 61 |
14 60
|
cfv |
|- ( -g ` u ) |
| 62 |
59 41 61
|
co |
|- ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) |
| 63 |
62
|
csn |
|- { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } |
| 64 |
63 48
|
cfv |
|- ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) |
| 65 |
64 47
|
cfv |
|- ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) |
| 66 |
58 39
|
cfv |
|- ( 2nd ` ( 1st ` x ) ) |
| 67 |
24 60
|
cfv |
|- ( -g ` c ) |
| 68 |
66 53 67
|
co |
|- ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) |
| 69 |
68
|
csn |
|- { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } |
| 70 |
69 52
|
cfv |
|- ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) |
| 71 |
65 70
|
wceq |
|- ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) |
| 72 |
56 71
|
wa |
|- ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) |
| 73 |
72 46 36
|
crio |
|- ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) |
| 74 |
44 45 73
|
cif |
|- if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) |
| 75 |
34 38 74
|
cmpt |
|- ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 76 |
33 75
|
wcel |
|- a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 77 |
76 32 31
|
wsbc |
|- [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 78 |
77 28 27
|
wsbc |
|- [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 79 |
78 26 25
|
wsbc |
|- [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 80 |
79 23 22
|
wsbc |
|- [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 81 |
80 19 18
|
wsbc |
|- [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 82 |
81 16 15
|
wsbc |
|- [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 83 |
82 12 11
|
wsbc |
|- [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
| 84 |
83 7
|
cab |
|- { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } |
| 85 |
3 6 84
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) |
| 86 |
1 2 85
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ) |
| 87 |
0 86
|
wceq |
|- HDMap1 = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ) |