| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chdma1 |  |-  HDMap1 | 
						
							| 1 |  | vk |  |-  k | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vw |  |-  w | 
						
							| 4 |  | clh |  |-  LHyp | 
						
							| 5 | 1 | cv |  |-  k | 
						
							| 6 | 5 4 | cfv |  |-  ( LHyp ` k ) | 
						
							| 7 |  | va |  |-  a | 
						
							| 8 |  | cdvh |  |-  DVecH | 
						
							| 9 | 5 8 | cfv |  |-  ( DVecH ` k ) | 
						
							| 10 | 3 | cv |  |-  w | 
						
							| 11 | 10 9 | cfv |  |-  ( ( DVecH ` k ) ` w ) | 
						
							| 12 |  | vu |  |-  u | 
						
							| 13 |  | cbs |  |-  Base | 
						
							| 14 | 12 | cv |  |-  u | 
						
							| 15 | 14 13 | cfv |  |-  ( Base ` u ) | 
						
							| 16 |  | vv |  |-  v | 
						
							| 17 |  | clspn |  |-  LSpan | 
						
							| 18 | 14 17 | cfv |  |-  ( LSpan ` u ) | 
						
							| 19 |  | vn |  |-  n | 
						
							| 20 |  | clcd |  |-  LCDual | 
						
							| 21 | 5 20 | cfv |  |-  ( LCDual ` k ) | 
						
							| 22 | 10 21 | cfv |  |-  ( ( LCDual ` k ) ` w ) | 
						
							| 23 |  | vc |  |-  c | 
						
							| 24 | 23 | cv |  |-  c | 
						
							| 25 | 24 13 | cfv |  |-  ( Base ` c ) | 
						
							| 26 |  | vd |  |-  d | 
						
							| 27 | 24 17 | cfv |  |-  ( LSpan ` c ) | 
						
							| 28 |  | vj |  |-  j | 
						
							| 29 |  | cmpd |  |-  mapd | 
						
							| 30 | 5 29 | cfv |  |-  ( mapd ` k ) | 
						
							| 31 | 10 30 | cfv |  |-  ( ( mapd ` k ) ` w ) | 
						
							| 32 |  | vm |  |-  m | 
						
							| 33 | 7 | cv |  |-  a | 
						
							| 34 |  | vx |  |-  x | 
						
							| 35 | 16 | cv |  |-  v | 
						
							| 36 | 26 | cv |  |-  d | 
						
							| 37 | 35 36 | cxp |  |-  ( v X. d ) | 
						
							| 38 | 37 35 | cxp |  |-  ( ( v X. d ) X. v ) | 
						
							| 39 |  | c2nd |  |-  2nd | 
						
							| 40 | 34 | cv |  |-  x | 
						
							| 41 | 40 39 | cfv |  |-  ( 2nd ` x ) | 
						
							| 42 |  | c0g |  |-  0g | 
						
							| 43 | 14 42 | cfv |  |-  ( 0g ` u ) | 
						
							| 44 | 41 43 | wceq |  |-  ( 2nd ` x ) = ( 0g ` u ) | 
						
							| 45 | 24 42 | cfv |  |-  ( 0g ` c ) | 
						
							| 46 |  | vh |  |-  h | 
						
							| 47 | 32 | cv |  |-  m | 
						
							| 48 | 19 | cv |  |-  n | 
						
							| 49 | 41 | csn |  |-  { ( 2nd ` x ) } | 
						
							| 50 | 49 48 | cfv |  |-  ( n ` { ( 2nd ` x ) } ) | 
						
							| 51 | 50 47 | cfv |  |-  ( m ` ( n ` { ( 2nd ` x ) } ) ) | 
						
							| 52 | 28 | cv |  |-  j | 
						
							| 53 | 46 | cv |  |-  h | 
						
							| 54 | 53 | csn |  |-  { h } | 
						
							| 55 | 54 52 | cfv |  |-  ( j ` { h } ) | 
						
							| 56 | 51 55 | wceq |  |-  ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) | 
						
							| 57 |  | c1st |  |-  1st | 
						
							| 58 | 40 57 | cfv |  |-  ( 1st ` x ) | 
						
							| 59 | 58 57 | cfv |  |-  ( 1st ` ( 1st ` x ) ) | 
						
							| 60 |  | csg |  |-  -g | 
						
							| 61 | 14 60 | cfv |  |-  ( -g ` u ) | 
						
							| 62 | 59 41 61 | co |  |-  ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) | 
						
							| 63 | 62 | csn |  |-  { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } | 
						
							| 64 | 63 48 | cfv |  |-  ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) | 
						
							| 65 | 64 47 | cfv |  |-  ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) | 
						
							| 66 | 58 39 | cfv |  |-  ( 2nd ` ( 1st ` x ) ) | 
						
							| 67 | 24 60 | cfv |  |-  ( -g ` c ) | 
						
							| 68 | 66 53 67 | co |  |-  ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) | 
						
							| 69 | 68 | csn |  |-  { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } | 
						
							| 70 | 69 52 | cfv |  |-  ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) | 
						
							| 71 | 65 70 | wceq |  |-  ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) | 
						
							| 72 | 56 71 | wa |  |-  ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) | 
						
							| 73 | 72 46 36 | crio |  |-  ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) | 
						
							| 74 | 44 45 73 | cif |  |-  if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) | 
						
							| 75 | 34 38 74 | cmpt |  |-  ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 76 | 33 75 | wcel |  |-  a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 77 | 76 32 31 | wsbc |  |-  [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 78 | 77 28 27 | wsbc |  |-  [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 79 | 78 26 25 | wsbc |  |-  [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 80 | 79 23 22 | wsbc |  |-  [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 81 | 80 19 18 | wsbc |  |-  [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 82 | 81 16 15 | wsbc |  |-  [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 83 | 82 12 11 | wsbc |  |-  [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) | 
						
							| 84 | 83 7 | cab |  |-  { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } | 
						
							| 85 | 3 6 84 | cmpt |  |-  ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) | 
						
							| 86 | 1 2 85 | cmpt |  |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ) | 
						
							| 87 | 0 86 | wceq |  |-  HDMap1 = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` k ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` k ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ) |