Metamath Proof Explorer


Definition df-hdmap1

Description: Define preliminary map from vectors to functionals in the closed kernel dual space. See hdmap1fval description for more details. (Contributed by NM, 14-May-2015)

Ref Expression
Assertion df-hdmap1 HDMap1 = k V w LHyp k a | [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ LSpan u / n]˙ [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h

Detailed syntax breakdown

Step Hyp Ref Expression
0 chdma1 class HDMap1
1 vk setvar k
2 cvv class V
3 vw setvar w
4 clh class LHyp
5 1 cv setvar k
6 5 4 cfv class LHyp k
7 va setvar a
8 cdvh class DVecH
9 5 8 cfv class DVecH k
10 3 cv setvar w
11 10 9 cfv class DVecH k w
12 vu setvar u
13 cbs class Base
14 12 cv setvar u
15 14 13 cfv class Base u
16 vv setvar v
17 clspn class LSpan
18 14 17 cfv class LSpan u
19 vn setvar n
20 clcd class LCDual
21 5 20 cfv class LCDual k
22 10 21 cfv class LCDual k w
23 vc setvar c
24 23 cv setvar c
25 24 13 cfv class Base c
26 vd setvar d
27 24 17 cfv class LSpan c
28 vj setvar j
29 cmpd class mapd
30 5 29 cfv class mapd k
31 10 30 cfv class mapd k w
32 vm setvar m
33 7 cv setvar a
34 vx setvar x
35 16 cv setvar v
36 26 cv setvar d
37 35 36 cxp class v × d
38 37 35 cxp class v × d × v
39 c2nd class 2 nd
40 34 cv setvar x
41 40 39 cfv class 2 nd x
42 c0g class 0 𝑔
43 14 42 cfv class 0 u
44 41 43 wceq wff 2 nd x = 0 u
45 24 42 cfv class 0 c
46 vh setvar h
47 32 cv setvar m
48 19 cv setvar n
49 41 csn class 2 nd x
50 49 48 cfv class n 2 nd x
51 50 47 cfv class m n 2 nd x
52 28 cv setvar j
53 46 cv setvar h
54 53 csn class h
55 54 52 cfv class j h
56 51 55 wceq wff m n 2 nd x = j h
57 c1st class 1 st
58 40 57 cfv class 1 st x
59 58 57 cfv class 1 st 1 st x
60 csg class - 𝑔
61 14 60 cfv class - u
62 59 41 61 co class 1 st 1 st x - u 2 nd x
63 62 csn class 1 st 1 st x - u 2 nd x
64 63 48 cfv class n 1 st 1 st x - u 2 nd x
65 64 47 cfv class m n 1 st 1 st x - u 2 nd x
66 58 39 cfv class 2 nd 1 st x
67 24 60 cfv class - c
68 66 53 67 co class 2 nd 1 st x - c h
69 68 csn class 2 nd 1 st x - c h
70 69 52 cfv class j 2 nd 1 st x - c h
71 65 70 wceq wff m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
72 56 71 wa wff m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
73 72 46 36 crio class ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
74 44 45 73 cif class if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
75 34 38 74 cmpt class x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
76 33 75 wcel wff a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
77 76 32 31 wsbc wff [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
78 77 28 27 wsbc wff [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
79 78 26 25 wsbc wff [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
80 79 23 22 wsbc wff [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
81 80 19 18 wsbc wff [˙ LSpan u / n]˙ [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
82 81 16 15 wsbc wff [˙Base u / v]˙ [˙ LSpan u / n]˙ [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
83 82 12 11 wsbc wff [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ LSpan u / n]˙ [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
84 83 7 cab class a | [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ LSpan u / n]˙ [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
85 3 6 84 cmpt class w LHyp k a | [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ LSpan u / n]˙ [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
86 1 2 85 cmpt class k V w LHyp k a | [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ LSpan u / n]˙ [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h
87 0 86 wceq wff HDMap1 = k V w LHyp k a | [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ LSpan u / n]˙ [˙ LCDual k w / c]˙ [˙Base c / d]˙ [˙ LSpan c / j]˙ [˙ mapd k w / m]˙ a x v × d × v if 2 nd x = 0 u 0 c ι h d | m n 2 nd x = j h m n 1 st 1 st x - u 2 nd x = j 2 nd 1 st x - c h