Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1val.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1fval.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1fval.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1fval.s |
|- .- = ( -g ` U ) |
5 |
|
hdmap1fval.o |
|- .0. = ( 0g ` U ) |
6 |
|
hdmap1fval.n |
|- N = ( LSpan ` U ) |
7 |
|
hdmap1fval.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap1fval.d |
|- D = ( Base ` C ) |
9 |
|
hdmap1fval.r |
|- R = ( -g ` C ) |
10 |
|
hdmap1fval.q |
|- Q = ( 0g ` C ) |
11 |
|
hdmap1fval.j |
|- J = ( LSpan ` C ) |
12 |
|
hdmap1fval.m |
|- M = ( ( mapd ` K ) ` W ) |
13 |
|
hdmap1fval.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
14 |
|
hdmap1fval.k |
|- ( ph -> ( K e. A /\ W e. H ) ) |
15 |
1
|
hdmap1ffval |
|- ( K e. A -> ( HDMap1 ` K ) = ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ) |
16 |
15
|
fveq1d |
|- ( K e. A -> ( ( HDMap1 ` K ) ` W ) = ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ` W ) ) |
17 |
13 16
|
eqtrid |
|- ( K e. A -> I = ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ` W ) ) |
18 |
|
fveq2 |
|- ( w = W -> ( ( DVecH ` K ) ` w ) = ( ( DVecH ` K ) ` W ) ) |
19 |
|
fveq2 |
|- ( w = W -> ( ( LCDual ` K ) ` w ) = ( ( LCDual ` K ) ` W ) ) |
20 |
|
fveq2 |
|- ( w = W -> ( ( mapd ` K ) ` w ) = ( ( mapd ` K ) ` W ) ) |
21 |
20
|
sbceq1d |
|- ( w = W -> ( [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
22 |
21
|
sbcbidv |
|- ( w = W -> ( [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
23 |
22
|
sbcbidv |
|- ( w = W -> ( [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
24 |
19 23
|
sbceqbid |
|- ( w = W -> ( [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> [. ( ( LCDual ` K ) ` W ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
25 |
24
|
sbcbidv |
|- ( w = W -> ( [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` W ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
26 |
25
|
sbcbidv |
|- ( w = W -> ( [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` W ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
27 |
18 26
|
sbceqbid |
|- ( w = W -> ( [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> [. ( ( DVecH ` K ) ` W ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` W ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
28 |
|
fvex |
|- ( ( DVecH ` K ) ` W ) e. _V |
29 |
|
fvex |
|- ( Base ` u ) e. _V |
30 |
|
fvex |
|- ( LSpan ` u ) e. _V |
31 |
2
|
eqeq2i |
|- ( u = U <-> u = ( ( DVecH ` K ) ` W ) ) |
32 |
31
|
biimpri |
|- ( u = ( ( DVecH ` K ) ` W ) -> u = U ) |
33 |
32
|
3ad2ant1 |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> u = U ) |
34 |
|
simp2 |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> v = ( Base ` u ) ) |
35 |
32
|
fveq2d |
|- ( u = ( ( DVecH ` K ) ` W ) -> ( Base ` u ) = ( Base ` U ) ) |
36 |
35
|
3ad2ant1 |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> ( Base ` u ) = ( Base ` U ) ) |
37 |
34 36
|
eqtrd |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> v = ( Base ` U ) ) |
38 |
37 3
|
eqtr4di |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> v = V ) |
39 |
|
simp3 |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> n = ( LSpan ` u ) ) |
40 |
33
|
fveq2d |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> ( LSpan ` u ) = ( LSpan ` U ) ) |
41 |
39 40
|
eqtrd |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> n = ( LSpan ` U ) ) |
42 |
41 6
|
eqtr4di |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> n = N ) |
43 |
|
fvex |
|- ( ( LCDual ` K ) ` W ) e. _V |
44 |
|
fvex |
|- ( Base ` c ) e. _V |
45 |
|
fvex |
|- ( LSpan ` c ) e. _V |
46 |
|
id |
|- ( c = ( ( LCDual ` K ) ` W ) -> c = ( ( LCDual ` K ) ` W ) ) |
47 |
46 7
|
eqtr4di |
|- ( c = ( ( LCDual ` K ) ` W ) -> c = C ) |
48 |
47
|
3ad2ant1 |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> c = C ) |
49 |
|
simp2 |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> d = ( Base ` c ) ) |
50 |
48
|
fveq2d |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> ( Base ` c ) = ( Base ` C ) ) |
51 |
50 8
|
eqtr4di |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> ( Base ` c ) = D ) |
52 |
49 51
|
eqtrd |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> d = D ) |
53 |
|
simp3 |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> j = ( LSpan ` c ) ) |
54 |
48
|
fveq2d |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> ( LSpan ` c ) = ( LSpan ` C ) ) |
55 |
54 11
|
eqtr4di |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> ( LSpan ` c ) = J ) |
56 |
53 55
|
eqtrd |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> j = J ) |
57 |
|
fvex |
|- ( ( mapd ` K ) ` W ) e. _V |
58 |
|
id |
|- ( m = ( ( mapd ` K ) ` W ) -> m = ( ( mapd ` K ) ` W ) ) |
59 |
58 12
|
eqtr4di |
|- ( m = ( ( mapd ` K ) ` W ) -> m = M ) |
60 |
|
fveq1 |
|- ( m = M -> ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( M ` ( n ` { ( 2nd ` x ) } ) ) ) |
61 |
60
|
eqeq1d |
|- ( m = M -> ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) <-> ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) ) ) |
62 |
|
fveq1 |
|- ( m = M -> ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) ) |
63 |
62
|
eqeq1d |
|- ( m = M -> ( ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) <-> ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) |
64 |
61 63
|
anbi12d |
|- ( m = M -> ( ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) <-> ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) |
65 |
64
|
riotabidv |
|- ( m = M -> ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) = ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) |
66 |
65
|
ifeq2d |
|- ( m = M -> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) = if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) |
67 |
66
|
mpteq2dv |
|- ( m = M -> ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) = ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) |
68 |
67
|
eleq2d |
|- ( m = M -> ( a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
69 |
59 68
|
syl |
|- ( m = ( ( mapd ` K ) ` W ) -> ( a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) ) |
70 |
57 69
|
sbcie |
|- ( [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) ) |
71 |
|
simp2 |
|- ( ( c = C /\ d = D /\ j = J ) -> d = D ) |
72 |
|
xpeq2 |
|- ( d = D -> ( v X. d ) = ( v X. D ) ) |
73 |
72
|
xpeq1d |
|- ( d = D -> ( ( v X. d ) X. v ) = ( ( v X. D ) X. v ) ) |
74 |
71 73
|
syl |
|- ( ( c = C /\ d = D /\ j = J ) -> ( ( v X. d ) X. v ) = ( ( v X. D ) X. v ) ) |
75 |
|
simp1 |
|- ( ( c = C /\ d = D /\ j = J ) -> c = C ) |
76 |
75
|
fveq2d |
|- ( ( c = C /\ d = D /\ j = J ) -> ( 0g ` c ) = ( 0g ` C ) ) |
77 |
76 10
|
eqtr4di |
|- ( ( c = C /\ d = D /\ j = J ) -> ( 0g ` c ) = Q ) |
78 |
|
simp3 |
|- ( ( c = C /\ d = D /\ j = J ) -> j = J ) |
79 |
78
|
fveq1d |
|- ( ( c = C /\ d = D /\ j = J ) -> ( j ` { h } ) = ( J ` { h } ) ) |
80 |
79
|
eqeq2d |
|- ( ( c = C /\ d = D /\ j = J ) -> ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) <-> ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) ) ) |
81 |
75
|
fveq2d |
|- ( ( c = C /\ d = D /\ j = J ) -> ( -g ` c ) = ( -g ` C ) ) |
82 |
81 9
|
eqtr4di |
|- ( ( c = C /\ d = D /\ j = J ) -> ( -g ` c ) = R ) |
83 |
82
|
oveqd |
|- ( ( c = C /\ d = D /\ j = J ) -> ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) = ( ( 2nd ` ( 1st ` x ) ) R h ) ) |
84 |
83
|
sneqd |
|- ( ( c = C /\ d = D /\ j = J ) -> { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } = { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) |
85 |
78 84
|
fveq12d |
|- ( ( c = C /\ d = D /\ j = J ) -> ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) |
86 |
85
|
eqeq2d |
|- ( ( c = C /\ d = D /\ j = J ) -> ( ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) <-> ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) |
87 |
80 86
|
anbi12d |
|- ( ( c = C /\ d = D /\ j = J ) -> ( ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) <-> ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) |
88 |
71 87
|
riotaeqbidv |
|- ( ( c = C /\ d = D /\ j = J ) -> ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) = ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) |
89 |
77 88
|
ifeq12d |
|- ( ( c = C /\ d = D /\ j = J ) -> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) = if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
90 |
74 89
|
mpteq12dv |
|- ( ( c = C /\ d = D /\ j = J ) -> ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) = ( x e. ( ( v X. D ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) |
91 |
90
|
eleq2d |
|- ( ( c = C /\ d = D /\ j = J ) -> ( a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( v X. D ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) ) |
92 |
70 91
|
syl5bb |
|- ( ( c = C /\ d = D /\ j = J ) -> ( [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( v X. D ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) ) |
93 |
48 52 56 92
|
syl3anc |
|- ( ( c = ( ( LCDual ` K ) ` W ) /\ d = ( Base ` c ) /\ j = ( LSpan ` c ) ) -> ( [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( v X. D ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) ) |
94 |
43 44 45 93
|
sbc3ie |
|- ( [. ( ( LCDual ` K ) ` W ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( v X. D ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) |
95 |
|
simp2 |
|- ( ( u = U /\ v = V /\ n = N ) -> v = V ) |
96 |
95
|
xpeq1d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( v X. D ) = ( V X. D ) ) |
97 |
96 95
|
xpeq12d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( ( v X. D ) X. v ) = ( ( V X. D ) X. V ) ) |
98 |
|
simp1 |
|- ( ( u = U /\ v = V /\ n = N ) -> u = U ) |
99 |
98
|
fveq2d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( 0g ` u ) = ( 0g ` U ) ) |
100 |
99 5
|
eqtr4di |
|- ( ( u = U /\ v = V /\ n = N ) -> ( 0g ` u ) = .0. ) |
101 |
100
|
eqeq2d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( ( 2nd ` x ) = ( 0g ` u ) <-> ( 2nd ` x ) = .0. ) ) |
102 |
|
simp3 |
|- ( ( u = U /\ v = V /\ n = N ) -> n = N ) |
103 |
102
|
fveq1d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( n ` { ( 2nd ` x ) } ) = ( N ` { ( 2nd ` x ) } ) ) |
104 |
103
|
fveqeq2d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) <-> ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) ) ) |
105 |
98
|
fveq2d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( -g ` u ) = ( -g ` U ) ) |
106 |
105 4
|
eqtr4di |
|- ( ( u = U /\ v = V /\ n = N ) -> ( -g ` u ) = .- ) |
107 |
106
|
oveqd |
|- ( ( u = U /\ v = V /\ n = N ) -> ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) = ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) ) |
108 |
107
|
sneqd |
|- ( ( u = U /\ v = V /\ n = N ) -> { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } = { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) |
109 |
102 108
|
fveq12d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) = ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) |
110 |
109
|
fveqeq2d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) <-> ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) |
111 |
104 110
|
anbi12d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) <-> ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) |
112 |
111
|
riotabidv |
|- ( ( u = U /\ v = V /\ n = N ) -> ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) |
113 |
101 112
|
ifbieq2d |
|- ( ( u = U /\ v = V /\ n = N ) -> if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) = if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
114 |
97 113
|
mpteq12dv |
|- ( ( u = U /\ v = V /\ n = N ) -> ( x e. ( ( v X. D ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) = ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) |
115 |
114
|
eleq2d |
|- ( ( u = U /\ v = V /\ n = N ) -> ( a e. ( x e. ( ( v X. D ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , Q , ( iota_ h e. D ( ( M ` ( n ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) <-> a e. ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) ) |
116 |
94 115
|
syl5bb |
|- ( ( u = U /\ v = V /\ n = N ) -> ( [. ( ( LCDual ` K ) ` W ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) ) |
117 |
33 38 42 116
|
syl3anc |
|- ( ( u = ( ( DVecH ` K ) ` W ) /\ v = ( Base ` u ) /\ n = ( LSpan ` u ) ) -> ( [. ( ( LCDual ` K ) ` W ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) ) |
118 |
28 29 30 117
|
sbc3ie |
|- ( [. ( ( DVecH ` K ) ` W ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` W ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` W ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) |
119 |
27 118
|
bitrdi |
|- ( w = W -> ( [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) <-> a e. ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) ) |
120 |
119
|
abbi1dv |
|- ( w = W -> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } = ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) |
121 |
|
eqid |
|- ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) = ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) |
122 |
3
|
fvexi |
|- V e. _V |
123 |
8
|
fvexi |
|- D e. _V |
124 |
122 123
|
xpex |
|- ( V X. D ) e. _V |
125 |
124 122
|
xpex |
|- ( ( V X. D ) X. V ) e. _V |
126 |
125
|
mptex |
|- ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) e. _V |
127 |
120 121 126
|
fvmpt |
|- ( W e. H -> ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( LSpan ` u ) / n ]. [. ( ( LCDual ` K ) ` w ) / c ]. [. ( Base ` c ) / d ]. [. ( LSpan ` c ) / j ]. [. ( ( mapd ` K ) ` w ) / m ]. a e. ( x e. ( ( v X. d ) X. v ) |-> if ( ( 2nd ` x ) = ( 0g ` u ) , ( 0g ` c ) , ( iota_ h e. d ( ( m ` ( n ` { ( 2nd ` x ) } ) ) = ( j ` { h } ) /\ ( m ` ( n ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` u ) ( 2nd ` x ) ) } ) ) = ( j ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` c ) h ) } ) ) ) ) ) } ) ` W ) = ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) |
128 |
17 127
|
sylan9eq |
|- ( ( K e. A /\ W e. H ) -> I = ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) |
129 |
14 128
|
syl |
|- ( ph -> I = ( x e. ( ( V X. D ) X. V ) |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) ) |