Step |
Hyp |
Ref |
Expression |
0 |
|
clpoN |
⊢ LPol |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cvv |
⊢ V |
3 |
|
vo |
⊢ 𝑜 |
4 |
|
clss |
⊢ LSubSp |
5 |
1
|
cv |
⊢ 𝑤 |
6 |
5 4
|
cfv |
⊢ ( LSubSp ‘ 𝑤 ) |
7 |
|
cmap |
⊢ ↑m |
8 |
|
cbs |
⊢ Base |
9 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
10 |
9
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑤 ) |
11 |
6 10 7
|
co |
⊢ ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) ) |
12 |
3
|
cv |
⊢ 𝑜 |
13 |
9 12
|
cfv |
⊢ ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) |
14 |
|
c0g |
⊢ 0g |
15 |
5 14
|
cfv |
⊢ ( 0g ‘ 𝑤 ) |
16 |
15
|
csn |
⊢ { ( 0g ‘ 𝑤 ) } |
17 |
13 16
|
wceq |
⊢ ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g ‘ 𝑤 ) } |
18 |
|
vx |
⊢ 𝑥 |
19 |
|
vy |
⊢ 𝑦 |
20 |
18
|
cv |
⊢ 𝑥 |
21 |
20 9
|
wss |
⊢ 𝑥 ⊆ ( Base ‘ 𝑤 ) |
22 |
19
|
cv |
⊢ 𝑦 |
23 |
22 9
|
wss |
⊢ 𝑦 ⊆ ( Base ‘ 𝑤 ) |
24 |
20 22
|
wss |
⊢ 𝑥 ⊆ 𝑦 |
25 |
21 23 24
|
w3a |
⊢ ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥 ⊆ 𝑦 ) |
26 |
22 12
|
cfv |
⊢ ( 𝑜 ‘ 𝑦 ) |
27 |
20 12
|
cfv |
⊢ ( 𝑜 ‘ 𝑥 ) |
28 |
26 27
|
wss |
⊢ ( 𝑜 ‘ 𝑦 ) ⊆ ( 𝑜 ‘ 𝑥 ) |
29 |
25 28
|
wi |
⊢ ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑜 ‘ 𝑦 ) ⊆ ( 𝑜 ‘ 𝑥 ) ) |
30 |
29 19
|
wal |
⊢ ∀ 𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑜 ‘ 𝑦 ) ⊆ ( 𝑜 ‘ 𝑥 ) ) |
31 |
30 18
|
wal |
⊢ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑜 ‘ 𝑦 ) ⊆ ( 𝑜 ‘ 𝑥 ) ) |
32 |
|
clsa |
⊢ LSAtoms |
33 |
5 32
|
cfv |
⊢ ( LSAtoms ‘ 𝑤 ) |
34 |
|
clsh |
⊢ LSHyp |
35 |
5 34
|
cfv |
⊢ ( LSHyp ‘ 𝑤 ) |
36 |
27 35
|
wcel |
⊢ ( 𝑜 ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) |
37 |
27 12
|
cfv |
⊢ ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) ) |
38 |
37 20
|
wceq |
⊢ ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) ) = 𝑥 |
39 |
36 38
|
wa |
⊢ ( ( 𝑜 ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) ) = 𝑥 ) |
40 |
39 18 33
|
wral |
⊢ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜 ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) ) = 𝑥 ) |
41 |
17 31 40
|
w3a |
⊢ ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g ‘ 𝑤 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑜 ‘ 𝑦 ) ⊆ ( 𝑜 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜 ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) ) = 𝑥 ) ) |
42 |
41 3 11
|
crab |
⊢ { 𝑜 ∈ ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) ) ∣ ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g ‘ 𝑤 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑜 ‘ 𝑦 ) ⊆ ( 𝑜 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜 ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) ) = 𝑥 ) ) } |
43 |
1 2 42
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ { 𝑜 ∈ ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) ) ∣ ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g ‘ 𝑤 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑜 ‘ 𝑦 ) ⊆ ( 𝑜 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜 ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) ) = 𝑥 ) ) } ) |
44 |
0 43
|
wceq |
⊢ LPol = ( 𝑤 ∈ V ↦ { 𝑜 ∈ ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) ) ∣ ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g ‘ 𝑤 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑜 ‘ 𝑦 ) ⊆ ( 𝑜 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜 ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) ) = 𝑥 ) ) } ) |