Metamath Proof Explorer


Definition df-lpolN

Description: Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of Holland95 p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014)

Ref Expression
Assertion df-lpolN LPol = ( 𝑤 ∈ V ↦ { 𝑜 ∈ ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) ) ∣ ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g𝑤 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 ) → ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜𝑥 ) ) = 𝑥 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clpoN LPol
1 vw 𝑤
2 cvv V
3 vo 𝑜
4 clss LSubSp
5 1 cv 𝑤
6 5 4 cfv ( LSubSp ‘ 𝑤 )
7 cmap m
8 cbs Base
9 5 8 cfv ( Base ‘ 𝑤 )
10 9 cpw 𝒫 ( Base ‘ 𝑤 )
11 6 10 7 co ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) )
12 3 cv 𝑜
13 9 12 cfv ( 𝑜 ‘ ( Base ‘ 𝑤 ) )
14 c0g 0g
15 5 14 cfv ( 0g𝑤 )
16 15 csn { ( 0g𝑤 ) }
17 13 16 wceq ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g𝑤 ) }
18 vx 𝑥
19 vy 𝑦
20 18 cv 𝑥
21 20 9 wss 𝑥 ⊆ ( Base ‘ 𝑤 )
22 19 cv 𝑦
23 22 9 wss 𝑦 ⊆ ( Base ‘ 𝑤 )
24 20 22 wss 𝑥𝑦
25 21 23 24 w3a ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 )
26 22 12 cfv ( 𝑜𝑦 )
27 20 12 cfv ( 𝑜𝑥 )
28 26 27 wss ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 )
29 25 28 wi ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 ) → ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 ) )
30 29 19 wal 𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 ) → ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 ) )
31 30 18 wal 𝑥𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 ) → ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 ) )
32 clsa LSAtoms
33 5 32 cfv ( LSAtoms ‘ 𝑤 )
34 clsh LSHyp
35 5 34 cfv ( LSHyp ‘ 𝑤 )
36 27 35 wcel ( 𝑜𝑥 ) ∈ ( LSHyp ‘ 𝑤 )
37 27 12 cfv ( 𝑜 ‘ ( 𝑜𝑥 ) )
38 37 20 wceq ( 𝑜 ‘ ( 𝑜𝑥 ) ) = 𝑥
39 36 38 wa ( ( 𝑜𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜𝑥 ) ) = 𝑥 )
40 39 18 33 wral 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜𝑥 ) ) = 𝑥 )
41 17 31 40 w3a ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g𝑤 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 ) → ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜𝑥 ) ) = 𝑥 ) )
42 41 3 11 crab { 𝑜 ∈ ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) ) ∣ ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g𝑤 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 ) → ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜𝑥 ) ) = 𝑥 ) ) }
43 1 2 42 cmpt ( 𝑤 ∈ V ↦ { 𝑜 ∈ ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) ) ∣ ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g𝑤 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 ) → ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜𝑥 ) ) = 𝑥 ) ) } )
44 0 43 wceq LPol = ( 𝑤 ∈ V ↦ { 𝑜 ∈ ( ( LSubSp ‘ 𝑤 ) ↑m 𝒫 ( Base ‘ 𝑤 ) ) ∣ ( ( 𝑜 ‘ ( Base ‘ 𝑤 ) ) = { ( 0g𝑤 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑤 ) ∧ 𝑥𝑦 ) → ( 𝑜𝑦 ) ⊆ ( 𝑜𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑤 ) ( ( 𝑜𝑥 ) ∈ ( LSHyp ‘ 𝑤 ) ∧ ( 𝑜 ‘ ( 𝑜𝑥 ) ) = 𝑥 ) ) } )