Step |
Hyp |
Ref |
Expression |
0 |
|
clpoN |
|- LPol |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vo |
|- o |
4 |
|
clss |
|- LSubSp |
5 |
1
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( LSubSp ` w ) |
7 |
|
cmap |
|- ^m |
8 |
|
cbs |
|- Base |
9 |
5 8
|
cfv |
|- ( Base ` w ) |
10 |
9
|
cpw |
|- ~P ( Base ` w ) |
11 |
6 10 7
|
co |
|- ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) |
12 |
3
|
cv |
|- o |
13 |
9 12
|
cfv |
|- ( o ` ( Base ` w ) ) |
14 |
|
c0g |
|- 0g |
15 |
5 14
|
cfv |
|- ( 0g ` w ) |
16 |
15
|
csn |
|- { ( 0g ` w ) } |
17 |
13 16
|
wceq |
|- ( o ` ( Base ` w ) ) = { ( 0g ` w ) } |
18 |
|
vx |
|- x |
19 |
|
vy |
|- y |
20 |
18
|
cv |
|- x |
21 |
20 9
|
wss |
|- x C_ ( Base ` w ) |
22 |
19
|
cv |
|- y |
23 |
22 9
|
wss |
|- y C_ ( Base ` w ) |
24 |
20 22
|
wss |
|- x C_ y |
25 |
21 23 24
|
w3a |
|- ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) |
26 |
22 12
|
cfv |
|- ( o ` y ) |
27 |
20 12
|
cfv |
|- ( o ` x ) |
28 |
26 27
|
wss |
|- ( o ` y ) C_ ( o ` x ) |
29 |
25 28
|
wi |
|- ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) |
30 |
29 19
|
wal |
|- A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) |
31 |
30 18
|
wal |
|- A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) |
32 |
|
clsa |
|- LSAtoms |
33 |
5 32
|
cfv |
|- ( LSAtoms ` w ) |
34 |
|
clsh |
|- LSHyp |
35 |
5 34
|
cfv |
|- ( LSHyp ` w ) |
36 |
27 35
|
wcel |
|- ( o ` x ) e. ( LSHyp ` w ) |
37 |
27 12
|
cfv |
|- ( o ` ( o ` x ) ) |
38 |
37 20
|
wceq |
|- ( o ` ( o ` x ) ) = x |
39 |
36 38
|
wa |
|- ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) |
40 |
39 18 33
|
wral |
|- A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) |
41 |
17 31 40
|
w3a |
|- ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) |
42 |
41 3 11
|
crab |
|- { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } |
43 |
1 2 42
|
cmpt |
|- ( w e. _V |-> { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } ) |
44 |
0 43
|
wceq |
|- LPol = ( w e. _V |-> { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } ) |