| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clpoN |  |-  LPol | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vo |  |-  o | 
						
							| 4 |  | clss |  |-  LSubSp | 
						
							| 5 | 1 | cv |  |-  w | 
						
							| 6 | 5 4 | cfv |  |-  ( LSubSp ` w ) | 
						
							| 7 |  | cmap |  |-  ^m | 
						
							| 8 |  | cbs |  |-  Base | 
						
							| 9 | 5 8 | cfv |  |-  ( Base ` w ) | 
						
							| 10 | 9 | cpw |  |-  ~P ( Base ` w ) | 
						
							| 11 | 6 10 7 | co |  |-  ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | 
						
							| 12 | 3 | cv |  |-  o | 
						
							| 13 | 9 12 | cfv |  |-  ( o ` ( Base ` w ) ) | 
						
							| 14 |  | c0g |  |-  0g | 
						
							| 15 | 5 14 | cfv |  |-  ( 0g ` w ) | 
						
							| 16 | 15 | csn |  |-  { ( 0g ` w ) } | 
						
							| 17 | 13 16 | wceq |  |-  ( o ` ( Base ` w ) ) = { ( 0g ` w ) } | 
						
							| 18 |  | vx |  |-  x | 
						
							| 19 |  | vy |  |-  y | 
						
							| 20 | 18 | cv |  |-  x | 
						
							| 21 | 20 9 | wss |  |-  x C_ ( Base ` w ) | 
						
							| 22 | 19 | cv |  |-  y | 
						
							| 23 | 22 9 | wss |  |-  y C_ ( Base ` w ) | 
						
							| 24 | 20 22 | wss |  |-  x C_ y | 
						
							| 25 | 21 23 24 | w3a |  |-  ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) | 
						
							| 26 | 22 12 | cfv |  |-  ( o ` y ) | 
						
							| 27 | 20 12 | cfv |  |-  ( o ` x ) | 
						
							| 28 | 26 27 | wss |  |-  ( o ` y ) C_ ( o ` x ) | 
						
							| 29 | 25 28 | wi |  |-  ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) | 
						
							| 30 | 29 19 | wal |  |-  A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) | 
						
							| 31 | 30 18 | wal |  |-  A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) | 
						
							| 32 |  | clsa |  |-  LSAtoms | 
						
							| 33 | 5 32 | cfv |  |-  ( LSAtoms ` w ) | 
						
							| 34 |  | clsh |  |-  LSHyp | 
						
							| 35 | 5 34 | cfv |  |-  ( LSHyp ` w ) | 
						
							| 36 | 27 35 | wcel |  |-  ( o ` x ) e. ( LSHyp ` w ) | 
						
							| 37 | 27 12 | cfv |  |-  ( o ` ( o ` x ) ) | 
						
							| 38 | 37 20 | wceq |  |-  ( o ` ( o ` x ) ) = x | 
						
							| 39 | 36 38 | wa |  |-  ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) | 
						
							| 40 | 39 18 33 | wral |  |-  A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) | 
						
							| 41 | 17 31 40 | w3a |  |-  ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) | 
						
							| 42 | 41 3 11 | crab |  |-  { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } | 
						
							| 43 | 1 2 42 | cmpt |  |-  ( w e. _V |-> { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } ) | 
						
							| 44 | 0 43 | wceq |  |-  LPol = ( w e. _V |-> { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } ) |