| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpolset.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lpolset.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | lpolset.z |  |-  .0. = ( 0g ` W ) | 
						
							| 4 |  | lpolset.a |  |-  A = ( LSAtoms ` W ) | 
						
							| 5 |  | lpolset.h |  |-  H = ( LSHyp ` W ) | 
						
							| 6 |  | lpolset.p |  |-  P = ( LPol ` W ) | 
						
							| 7 |  | elex |  |-  ( W e. X -> W e. _V ) | 
						
							| 8 |  | fveq2 |  |-  ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) | 
						
							| 9 | 8 2 | eqtr4di |  |-  ( w = W -> ( LSubSp ` w ) = S ) | 
						
							| 10 |  | fveq2 |  |-  ( w = W -> ( Base ` w ) = ( Base ` W ) ) | 
						
							| 11 | 10 1 | eqtr4di |  |-  ( w = W -> ( Base ` w ) = V ) | 
						
							| 12 | 11 | pweqd |  |-  ( w = W -> ~P ( Base ` w ) = ~P V ) | 
						
							| 13 | 9 12 | oveq12d |  |-  ( w = W -> ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) = ( S ^m ~P V ) ) | 
						
							| 14 | 11 | fveq2d |  |-  ( w = W -> ( o ` ( Base ` w ) ) = ( o ` V ) ) | 
						
							| 15 |  | fveq2 |  |-  ( w = W -> ( 0g ` w ) = ( 0g ` W ) ) | 
						
							| 16 | 15 3 | eqtr4di |  |-  ( w = W -> ( 0g ` w ) = .0. ) | 
						
							| 17 | 16 | sneqd |  |-  ( w = W -> { ( 0g ` w ) } = { .0. } ) | 
						
							| 18 | 14 17 | eqeq12d |  |-  ( w = W -> ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } <-> ( o ` V ) = { .0. } ) ) | 
						
							| 19 | 11 | sseq2d |  |-  ( w = W -> ( x C_ ( Base ` w ) <-> x C_ V ) ) | 
						
							| 20 | 11 | sseq2d |  |-  ( w = W -> ( y C_ ( Base ` w ) <-> y C_ V ) ) | 
						
							| 21 | 19 20 | 3anbi12d |  |-  ( w = W -> ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) <-> ( x C_ V /\ y C_ V /\ x C_ y ) ) ) | 
						
							| 22 | 21 | imbi1d |  |-  ( w = W -> ( ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) <-> ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) ) ) | 
						
							| 23 | 22 | 2albidv |  |-  ( w = W -> ( A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) <-> A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) ) ) | 
						
							| 24 |  | fveq2 |  |-  ( w = W -> ( LSAtoms ` w ) = ( LSAtoms ` W ) ) | 
						
							| 25 | 24 4 | eqtr4di |  |-  ( w = W -> ( LSAtoms ` w ) = A ) | 
						
							| 26 |  | fveq2 |  |-  ( w = W -> ( LSHyp ` w ) = ( LSHyp ` W ) ) | 
						
							| 27 | 26 5 | eqtr4di |  |-  ( w = W -> ( LSHyp ` w ) = H ) | 
						
							| 28 | 27 | eleq2d |  |-  ( w = W -> ( ( o ` x ) e. ( LSHyp ` w ) <-> ( o ` x ) e. H ) ) | 
						
							| 29 | 28 | anbi1d |  |-  ( w = W -> ( ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) <-> ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) ) | 
						
							| 30 | 25 29 | raleqbidv |  |-  ( w = W -> ( A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) <-> A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) ) | 
						
							| 31 | 18 23 30 | 3anbi123d |  |-  ( w = W -> ( ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) <-> ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) ) ) | 
						
							| 32 | 13 31 | rabeqbidv |  |-  ( w = W -> { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } = { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } ) | 
						
							| 33 |  | df-lpolN |  |-  LPol = ( w e. _V |-> { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } ) | 
						
							| 34 |  | ovex |  |-  ( S ^m ~P V ) e. _V | 
						
							| 35 | 34 | rabex |  |-  { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } e. _V | 
						
							| 36 | 32 33 35 | fvmpt |  |-  ( W e. _V -> ( LPol ` W ) = { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } ) | 
						
							| 37 | 6 36 | eqtrid |  |-  ( W e. _V -> P = { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } ) | 
						
							| 38 | 7 37 | syl |  |-  ( W e. X -> P = { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } ) |