Step |
Hyp |
Ref |
Expression |
1 |
|
lpolset.v |
|- V = ( Base ` W ) |
2 |
|
lpolset.s |
|- S = ( LSubSp ` W ) |
3 |
|
lpolset.z |
|- .0. = ( 0g ` W ) |
4 |
|
lpolset.a |
|- A = ( LSAtoms ` W ) |
5 |
|
lpolset.h |
|- H = ( LSHyp ` W ) |
6 |
|
lpolset.p |
|- P = ( LPol ` W ) |
7 |
|
elex |
|- ( W e. X -> W e. _V ) |
8 |
|
fveq2 |
|- ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) |
9 |
8 2
|
eqtr4di |
|- ( w = W -> ( LSubSp ` w ) = S ) |
10 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
11 |
10 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
12 |
11
|
pweqd |
|- ( w = W -> ~P ( Base ` w ) = ~P V ) |
13 |
9 12
|
oveq12d |
|- ( w = W -> ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) = ( S ^m ~P V ) ) |
14 |
11
|
fveq2d |
|- ( w = W -> ( o ` ( Base ` w ) ) = ( o ` V ) ) |
15 |
|
fveq2 |
|- ( w = W -> ( 0g ` w ) = ( 0g ` W ) ) |
16 |
15 3
|
eqtr4di |
|- ( w = W -> ( 0g ` w ) = .0. ) |
17 |
16
|
sneqd |
|- ( w = W -> { ( 0g ` w ) } = { .0. } ) |
18 |
14 17
|
eqeq12d |
|- ( w = W -> ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } <-> ( o ` V ) = { .0. } ) ) |
19 |
11
|
sseq2d |
|- ( w = W -> ( x C_ ( Base ` w ) <-> x C_ V ) ) |
20 |
11
|
sseq2d |
|- ( w = W -> ( y C_ ( Base ` w ) <-> y C_ V ) ) |
21 |
19 20
|
3anbi12d |
|- ( w = W -> ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) <-> ( x C_ V /\ y C_ V /\ x C_ y ) ) ) |
22 |
21
|
imbi1d |
|- ( w = W -> ( ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) <-> ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) ) ) |
23 |
22
|
2albidv |
|- ( w = W -> ( A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) <-> A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) ) ) |
24 |
|
fveq2 |
|- ( w = W -> ( LSAtoms ` w ) = ( LSAtoms ` W ) ) |
25 |
24 4
|
eqtr4di |
|- ( w = W -> ( LSAtoms ` w ) = A ) |
26 |
|
fveq2 |
|- ( w = W -> ( LSHyp ` w ) = ( LSHyp ` W ) ) |
27 |
26 5
|
eqtr4di |
|- ( w = W -> ( LSHyp ` w ) = H ) |
28 |
27
|
eleq2d |
|- ( w = W -> ( ( o ` x ) e. ( LSHyp ` w ) <-> ( o ` x ) e. H ) ) |
29 |
28
|
anbi1d |
|- ( w = W -> ( ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) <-> ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) ) |
30 |
25 29
|
raleqbidv |
|- ( w = W -> ( A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) <-> A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) ) |
31 |
18 23 30
|
3anbi123d |
|- ( w = W -> ( ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) <-> ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) ) ) |
32 |
13 31
|
rabeqbidv |
|- ( w = W -> { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } = { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } ) |
33 |
|
df-lpolN |
|- LPol = ( w e. _V |-> { o e. ( ( LSubSp ` w ) ^m ~P ( Base ` w ) ) | ( ( o ` ( Base ` w ) ) = { ( 0g ` w ) } /\ A. x A. y ( ( x C_ ( Base ` w ) /\ y C_ ( Base ` w ) /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. ( LSAtoms ` w ) ( ( o ` x ) e. ( LSHyp ` w ) /\ ( o ` ( o ` x ) ) = x ) ) } ) |
34 |
|
ovex |
|- ( S ^m ~P V ) e. _V |
35 |
34
|
rabex |
|- { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } e. _V |
36 |
32 33 35
|
fvmpt |
|- ( W e. _V -> ( LPol ` W ) = { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } ) |
37 |
6 36
|
syl5eq |
|- ( W e. _V -> P = { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } ) |
38 |
7 37
|
syl |
|- ( W e. X -> P = { o e. ( S ^m ~P V ) | ( ( o ` V ) = { .0. } /\ A. x A. y ( ( x C_ V /\ y C_ V /\ x C_ y ) -> ( o ` y ) C_ ( o ` x ) ) /\ A. x e. A ( ( o ` x ) e. H /\ ( o ` ( o ` x ) ) = x ) ) } ) |