Metamath Proof Explorer


Theorem lpolsetN

Description: The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolset.v V = Base W
lpolset.s S = LSubSp W
lpolset.z 0 ˙ = 0 W
lpolset.a A = LSAtoms W
lpolset.h H = LSHyp W
lpolset.p P = LPol W
Assertion lpolsetN W X P = o S 𝒫 V | o V = 0 ˙ x y x V y V x y o y o x x A o x H o o x = x

Proof

Step Hyp Ref Expression
1 lpolset.v V = Base W
2 lpolset.s S = LSubSp W
3 lpolset.z 0 ˙ = 0 W
4 lpolset.a A = LSAtoms W
5 lpolset.h H = LSHyp W
6 lpolset.p P = LPol W
7 elex W X W V
8 fveq2 w = W LSubSp w = LSubSp W
9 8 2 eqtr4di w = W LSubSp w = S
10 fveq2 w = W Base w = Base W
11 10 1 eqtr4di w = W Base w = V
12 11 pweqd w = W 𝒫 Base w = 𝒫 V
13 9 12 oveq12d w = W LSubSp w 𝒫 Base w = S 𝒫 V
14 11 fveq2d w = W o Base w = o V
15 fveq2 w = W 0 w = 0 W
16 15 3 eqtr4di w = W 0 w = 0 ˙
17 16 sneqd w = W 0 w = 0 ˙
18 14 17 eqeq12d w = W o Base w = 0 w o V = 0 ˙
19 11 sseq2d w = W x Base w x V
20 11 sseq2d w = W y Base w y V
21 19 20 3anbi12d w = W x Base w y Base w x y x V y V x y
22 21 imbi1d w = W x Base w y Base w x y o y o x x V y V x y o y o x
23 22 2albidv w = W x y x Base w y Base w x y o y o x x y x V y V x y o y o x
24 fveq2 w = W LSAtoms w = LSAtoms W
25 24 4 eqtr4di w = W LSAtoms w = A
26 fveq2 w = W LSHyp w = LSHyp W
27 26 5 eqtr4di w = W LSHyp w = H
28 27 eleq2d w = W o x LSHyp w o x H
29 28 anbi1d w = W o x LSHyp w o o x = x o x H o o x = x
30 25 29 raleqbidv w = W x LSAtoms w o x LSHyp w o o x = x x A o x H o o x = x
31 18 23 30 3anbi123d w = W o Base w = 0 w x y x Base w y Base w x y o y o x x LSAtoms w o x LSHyp w o o x = x o V = 0 ˙ x y x V y V x y o y o x x A o x H o o x = x
32 13 31 rabeqbidv w = W o LSubSp w 𝒫 Base w | o Base w = 0 w x y x Base w y Base w x y o y o x x LSAtoms w o x LSHyp w o o x = x = o S 𝒫 V | o V = 0 ˙ x y x V y V x y o y o x x A o x H o o x = x
33 df-lpolN LPol = w V o LSubSp w 𝒫 Base w | o Base w = 0 w x y x Base w y Base w x y o y o x x LSAtoms w o x LSHyp w o o x = x
34 ovex S 𝒫 V V
35 34 rabex o S 𝒫 V | o V = 0 ˙ x y x V y V x y o y o x x A o x H o o x = x V
36 32 33 35 fvmpt W V LPol W = o S 𝒫 V | o V = 0 ˙ x y x V y V x y o y o x x A o x H o o x = x
37 6 36 syl5eq W V P = o S 𝒫 V | o V = 0 ˙ x y x V y V x y o y o x x A o x H o o x = x
38 7 37 syl W X P = o S 𝒫 V | o V = 0 ˙ x y x V y V x y o y o x x A o x H o o x = x