Metamath Proof Explorer


Definition df-lpolN

Description: Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of Holland95 p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014)

Ref Expression
Assertion df-lpolN LPol = w V o LSubSp w 𝒫 Base w | o Base w = 0 w x y x Base w y Base w x y o y o x x LSAtoms w o x LSHyp w o o x = x

Detailed syntax breakdown

Step Hyp Ref Expression
0 clpoN class LPol
1 vw setvar w
2 cvv class V
3 vo setvar o
4 clss class LSubSp
5 1 cv setvar w
6 5 4 cfv class LSubSp w
7 cmap class 𝑚
8 cbs class Base
9 5 8 cfv class Base w
10 9 cpw class 𝒫 Base w
11 6 10 7 co class LSubSp w 𝒫 Base w
12 3 cv setvar o
13 9 12 cfv class o Base w
14 c0g class 0 𝑔
15 5 14 cfv class 0 w
16 15 csn class 0 w
17 13 16 wceq wff o Base w = 0 w
18 vx setvar x
19 vy setvar y
20 18 cv setvar x
21 20 9 wss wff x Base w
22 19 cv setvar y
23 22 9 wss wff y Base w
24 20 22 wss wff x y
25 21 23 24 w3a wff x Base w y Base w x y
26 22 12 cfv class o y
27 20 12 cfv class o x
28 26 27 wss wff o y o x
29 25 28 wi wff x Base w y Base w x y o y o x
30 29 19 wal wff y x Base w y Base w x y o y o x
31 30 18 wal wff x y x Base w y Base w x y o y o x
32 clsa class LSAtoms
33 5 32 cfv class LSAtoms w
34 clsh class LSHyp
35 5 34 cfv class LSHyp w
36 27 35 wcel wff o x LSHyp w
37 27 12 cfv class o o x
38 37 20 wceq wff o o x = x
39 36 38 wa wff o x LSHyp w o o x = x
40 39 18 33 wral wff x LSAtoms w o x LSHyp w o o x = x
41 17 31 40 w3a wff o Base w = 0 w x y x Base w y Base w x y o y o x x LSAtoms w o x LSHyp w o o x = x
42 41 3 11 crab class o LSubSp w 𝒫 Base w | o Base w = 0 w x y x Base w y Base w x y o y o x x LSAtoms w o x LSHyp w o o x = x
43 1 2 42 cmpt class w V o LSubSp w 𝒫 Base w | o Base w = 0 w x y x Base w y Base w x y o y o x x LSAtoms w o x LSHyp w o o x = x
44 0 43 wceq wff LPol = w V o LSubSp w 𝒫 Base w | o Base w = 0 w x y x Base w y Base w x y o y o x x LSAtoms w o x LSHyp w o o x = x