Metamath Proof Explorer


Definition df-lpolN

Description: Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of Holland95 p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014)

Ref Expression
Assertion df-lpolN LPol=wVoLSubSpw𝒫Basew|oBasew=0wxyxBasewyBasewxyoyoxxLSAtomswoxLSHypwoox=x

Detailed syntax breakdown

Step Hyp Ref Expression
0 clpoN classLPol
1 vw setvarw
2 cvv classV
3 vo setvaro
4 clss classLSubSp
5 1 cv setvarw
6 5 4 cfv classLSubSpw
7 cmap class𝑚
8 cbs classBase
9 5 8 cfv classBasew
10 9 cpw class𝒫Basew
11 6 10 7 co classLSubSpw𝒫Basew
12 3 cv setvaro
13 9 12 cfv classoBasew
14 c0g class0𝑔
15 5 14 cfv class0w
16 15 csn class0w
17 13 16 wceq wffoBasew=0w
18 vx setvarx
19 vy setvary
20 18 cv setvarx
21 20 9 wss wffxBasew
22 19 cv setvary
23 22 9 wss wffyBasew
24 20 22 wss wffxy
25 21 23 24 w3a wffxBasewyBasewxy
26 22 12 cfv classoy
27 20 12 cfv classox
28 26 27 wss wffoyox
29 25 28 wi wffxBasewyBasewxyoyox
30 29 19 wal wffyxBasewyBasewxyoyox
31 30 18 wal wffxyxBasewyBasewxyoyox
32 clsa classLSAtoms
33 5 32 cfv classLSAtomsw
34 clsh classLSHyp
35 5 34 cfv classLSHypw
36 27 35 wcel wffoxLSHypw
37 27 12 cfv classoox
38 37 20 wceq wffoox=x
39 36 38 wa wffoxLSHypwoox=x
40 39 18 33 wral wffxLSAtomswoxLSHypwoox=x
41 17 31 40 w3a wffoBasew=0wxyxBasewyBasewxyoyoxxLSAtomswoxLSHypwoox=x
42 41 3 11 crab classoLSubSpw𝒫Basew|oBasew=0wxyxBasewyBasewxyoyoxxLSAtomswoxLSHypwoox=x
43 1 2 42 cmpt classwVoLSubSpw𝒫Basew|oBasew=0wxyxBasewyBasewxyoyoxxLSAtomswoxLSHypwoox=x
44 0 43 wceq wffLPol=wVoLSubSpw𝒫Basew|oBasew=0wxyxBasewyBasewxyoyoxxLSAtomswoxLSHypwoox=x