Metamath Proof Explorer


Definition df-lring

Description: A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025) (Revised by SN, 23-Feb-2025)

Ref Expression
Assertion df-lring LRing = { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g𝑟 ) 𝑦 ) = ( 1r𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clring LRing
1 vr 𝑟
2 cnzr NzRing
3 vx 𝑥
4 cbs Base
5 1 cv 𝑟
6 5 4 cfv ( Base ‘ 𝑟 )
7 vy 𝑦
8 3 cv 𝑥
9 cplusg +g
10 5 9 cfv ( +g𝑟 )
11 7 cv 𝑦
12 8 11 10 co ( 𝑥 ( +g𝑟 ) 𝑦 )
13 cur 1r
14 5 13 cfv ( 1r𝑟 )
15 12 14 wceq ( 𝑥 ( +g𝑟 ) 𝑦 ) = ( 1r𝑟 )
16 cui Unit
17 5 16 cfv ( Unit ‘ 𝑟 )
18 8 17 wcel 𝑥 ∈ ( Unit ‘ 𝑟 )
19 11 17 wcel 𝑦 ∈ ( Unit ‘ 𝑟 )
20 18 19 wo ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) )
21 15 20 wi ( ( 𝑥 ( +g𝑟 ) 𝑦 ) = ( 1r𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) )
22 21 7 6 wral 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g𝑟 ) 𝑦 ) = ( 1r𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) )
23 22 3 6 wral 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g𝑟 ) 𝑦 ) = ( 1r𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) )
24 23 1 2 crab { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g𝑟 ) 𝑦 ) = ( 1r𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) }
25 0 24 wceq LRing = { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g𝑟 ) 𝑦 ) = ( 1r𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) }