Step |
Hyp |
Ref |
Expression |
0 |
|
clring |
⊢ LRing |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cnzr |
⊢ NzRing |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
7 |
|
vy |
⊢ 𝑦 |
8 |
3
|
cv |
⊢ 𝑥 |
9 |
|
cplusg |
⊢ +g |
10 |
5 9
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
11 |
7
|
cv |
⊢ 𝑦 |
12 |
8 11 10
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) |
13 |
|
cur |
⊢ 1r |
14 |
5 13
|
cfv |
⊢ ( 1r ‘ 𝑟 ) |
15 |
12 14
|
wceq |
⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) |
16 |
|
cui |
⊢ Unit |
17 |
5 16
|
cfv |
⊢ ( Unit ‘ 𝑟 ) |
18 |
8 17
|
wcel |
⊢ 𝑥 ∈ ( Unit ‘ 𝑟 ) |
19 |
11 17
|
wcel |
⊢ 𝑦 ∈ ( Unit ‘ 𝑟 ) |
20 |
18 19
|
wo |
⊢ ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) |
21 |
15 20
|
wi |
⊢ ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) |
22 |
21 7 6
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) |
23 |
22 3 6
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) |
24 |
23 1 2
|
crab |
⊢ { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) } |
25 |
0 24
|
wceq |
⊢ LRing = { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) } |