| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clring | ⊢ LRing | 
						
							| 1 |  | vr | ⊢ 𝑟 | 
						
							| 2 |  | cnzr | ⊢ NzRing | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑟 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑟 ) | 
						
							| 7 |  | vy | ⊢ 𝑦 | 
						
							| 8 | 3 | cv | ⊢ 𝑥 | 
						
							| 9 |  | cplusg | ⊢ +g | 
						
							| 10 | 5 9 | cfv | ⊢ ( +g ‘ 𝑟 ) | 
						
							| 11 | 7 | cv | ⊢ 𝑦 | 
						
							| 12 | 8 11 10 | co | ⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) | 
						
							| 13 |  | cur | ⊢ 1r | 
						
							| 14 | 5 13 | cfv | ⊢ ( 1r ‘ 𝑟 ) | 
						
							| 15 | 12 14 | wceq | ⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 ) | 
						
							| 16 |  | cui | ⊢ Unit | 
						
							| 17 | 5 16 | cfv | ⊢ ( Unit ‘ 𝑟 ) | 
						
							| 18 | 8 17 | wcel | ⊢ 𝑥  ∈  ( Unit ‘ 𝑟 ) | 
						
							| 19 | 11 17 | wcel | ⊢ 𝑦  ∈  ( Unit ‘ 𝑟 ) | 
						
							| 20 | 18 19 | wo | ⊢ ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) | 
						
							| 21 | 15 20 | wi | ⊢ ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) ) | 
						
							| 22 | 21 7 6 | wral | ⊢ ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) ) | 
						
							| 23 | 22 3 6 | wral | ⊢ ∀ 𝑥  ∈  ( Base ‘ 𝑟 ) ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) ) | 
						
							| 24 | 23 1 2 | crab | ⊢ { 𝑟  ∈  NzRing  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑟 ) ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) ) } | 
						
							| 25 | 0 24 | wceq | ⊢ LRing  =  { 𝑟  ∈  NzRing  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑟 ) ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) ) } |