| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clring |
⊢ LRing |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cnzr |
⊢ NzRing |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑟 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 7 |
|
vy |
⊢ 𝑦 |
| 8 |
3
|
cv |
⊢ 𝑥 |
| 9 |
|
cplusg |
⊢ +g |
| 10 |
5 9
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
| 11 |
7
|
cv |
⊢ 𝑦 |
| 12 |
8 11 10
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) |
| 13 |
|
cur |
⊢ 1r |
| 14 |
5 13
|
cfv |
⊢ ( 1r ‘ 𝑟 ) |
| 15 |
12 14
|
wceq |
⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) |
| 16 |
|
cui |
⊢ Unit |
| 17 |
5 16
|
cfv |
⊢ ( Unit ‘ 𝑟 ) |
| 18 |
8 17
|
wcel |
⊢ 𝑥 ∈ ( Unit ‘ 𝑟 ) |
| 19 |
11 17
|
wcel |
⊢ 𝑦 ∈ ( Unit ‘ 𝑟 ) |
| 20 |
18 19
|
wo |
⊢ ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) |
| 21 |
15 20
|
wi |
⊢ ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) |
| 22 |
21 7 6
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) |
| 23 |
22 3 6
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) |
| 24 |
23 1 2
|
crab |
⊢ { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) } |
| 25 |
0 24
|
wceq |
⊢ LRing = { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) } |