Step |
Hyp |
Ref |
Expression |
0 |
|
clring |
|- LRing |
1 |
|
vr |
|- r |
2 |
|
cnzr |
|- NzRing |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- r |
6 |
5 4
|
cfv |
|- ( Base ` r ) |
7 |
|
vy |
|- y |
8 |
3
|
cv |
|- x |
9 |
|
cplusg |
|- +g |
10 |
5 9
|
cfv |
|- ( +g ` r ) |
11 |
7
|
cv |
|- y |
12 |
8 11 10
|
co |
|- ( x ( +g ` r ) y ) |
13 |
|
cur |
|- 1r |
14 |
5 13
|
cfv |
|- ( 1r ` r ) |
15 |
12 14
|
wceq |
|- ( x ( +g ` r ) y ) = ( 1r ` r ) |
16 |
|
cui |
|- Unit |
17 |
5 16
|
cfv |
|- ( Unit ` r ) |
18 |
8 17
|
wcel |
|- x e. ( Unit ` r ) |
19 |
11 17
|
wcel |
|- y e. ( Unit ` r ) |
20 |
18 19
|
wo |
|- ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) |
21 |
15 20
|
wi |
|- ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) |
22 |
21 7 6
|
wral |
|- A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) |
23 |
22 3 6
|
wral |
|- A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) |
24 |
23 1 2
|
crab |
|- { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } |
25 |
0 24
|
wceq |
|- LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } |