Metamath Proof Explorer


Definition df-lring

Description: A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025) (Revised by SN, 23-Feb-2025)

Ref Expression
Assertion df-lring
|- LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clring
 |-  LRing
1 vr
 |-  r
2 cnzr
 |-  NzRing
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  r
6 5 4 cfv
 |-  ( Base ` r )
7 vy
 |-  y
8 3 cv
 |-  x
9 cplusg
 |-  +g
10 5 9 cfv
 |-  ( +g ` r )
11 7 cv
 |-  y
12 8 11 10 co
 |-  ( x ( +g ` r ) y )
13 cur
 |-  1r
14 5 13 cfv
 |-  ( 1r ` r )
15 12 14 wceq
 |-  ( x ( +g ` r ) y ) = ( 1r ` r )
16 cui
 |-  Unit
17 5 16 cfv
 |-  ( Unit ` r )
18 8 17 wcel
 |-  x e. ( Unit ` r )
19 11 17 wcel
 |-  y e. ( Unit ` r )
20 18 19 wo
 |-  ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) )
21 15 20 wi
 |-  ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) )
22 21 7 6 wral
 |-  A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) )
23 22 3 6 wral
 |-  A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) )
24 23 1 2 crab
 |-  { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) }
25 0 24 wceq
 |-  LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) }