| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clring |  |-  LRing | 
						
							| 1 |  | vr |  |-  r | 
						
							| 2 |  | cnzr |  |-  NzRing | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  r | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` r ) | 
						
							| 7 |  | vy |  |-  y | 
						
							| 8 | 3 | cv |  |-  x | 
						
							| 9 |  | cplusg |  |-  +g | 
						
							| 10 | 5 9 | cfv |  |-  ( +g ` r ) | 
						
							| 11 | 7 | cv |  |-  y | 
						
							| 12 | 8 11 10 | co |  |-  ( x ( +g ` r ) y ) | 
						
							| 13 |  | cur |  |-  1r | 
						
							| 14 | 5 13 | cfv |  |-  ( 1r ` r ) | 
						
							| 15 | 12 14 | wceq |  |-  ( x ( +g ` r ) y ) = ( 1r ` r ) | 
						
							| 16 |  | cui |  |-  Unit | 
						
							| 17 | 5 16 | cfv |  |-  ( Unit ` r ) | 
						
							| 18 | 8 17 | wcel |  |-  x e. ( Unit ` r ) | 
						
							| 19 | 11 17 | wcel |  |-  y e. ( Unit ` r ) | 
						
							| 20 | 18 19 | wo |  |-  ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) | 
						
							| 21 | 15 20 | wi |  |-  ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) | 
						
							| 22 | 21 7 6 | wral |  |-  A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) | 
						
							| 23 | 22 3 6 | wral |  |-  A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) | 
						
							| 24 | 23 1 2 | crab |  |-  { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } | 
						
							| 25 | 0 24 | wceq |  |-  LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } |