Metamath Proof Explorer


Definition df-lring

Description: A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025) (Revised by SN, 23-Feb-2025)

Ref Expression
Assertion df-lring Could not format assertion : No typesetting found for |- LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 clring Could not format LRing : No typesetting found for class LRing with typecode class
1 vr setvarr
2 cnzr classNzRing
3 vx setvarx
4 cbs classBase
5 1 cv setvarr
6 5 4 cfv classBaser
7 vy setvary
8 3 cv setvarx
9 cplusg class+𝑔
10 5 9 cfv class+r
11 7 cv setvary
12 8 11 10 co classx+ry
13 cur class1r
14 5 13 cfv class1r
15 12 14 wceq wffx+ry=1r
16 cui classUnit
17 5 16 cfv classUnitr
18 8 17 wcel wffxUnitr
19 11 17 wcel wffyUnitr
20 18 19 wo wffxUnitryUnitr
21 15 20 wi wffx+ry=1rxUnitryUnitr
22 21 7 6 wral wffyBaserx+ry=1rxUnitryUnitr
23 22 3 6 wral wffxBaseryBaserx+ry=1rxUnitryUnitr
24 23 1 2 crab classrNzRing|xBaseryBaserx+ry=1rxUnitryUnitr
25 0 24 wceq Could not format LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } : No typesetting found for wff LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } with typecode wff