Description: A local ring is a nonzero ring where for any two elements summing to
one, at least one is invertible. Any field is a local ring; the ring of
integers is an example of a ring which is not a local ring.
(Contributed by Jim Kingdon, 18-Feb-2025)(Revised by SN, 23-Feb-2025)
Could not format assertion : No typesetting found for |- LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } with typecode |-
Could not format LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } : No typesetting found for wff LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } with typecode wff