Metamath Proof Explorer


Theorem islring

Description: The predicate "is a local ring". (Contributed by SN, 23-Feb-2025)

Ref Expression
Hypotheses islring.b B = Base R
islring.a + ˙ = + R
islring.1 1 ˙ = 1 R
islring.u U = Unit R
Assertion islring R LRing R NzRing x B y B x + ˙ y = 1 ˙ x U y U

Proof

Step Hyp Ref Expression
1 islring.b B = Base R
2 islring.a + ˙ = + R
3 islring.1 1 ˙ = 1 R
4 islring.u U = Unit R
5 fveq2 r = R Base r = Base R
6 5 1 eqtr4di r = R Base r = B
7 fveq2 r = R + r = + R
8 7 2 eqtr4di r = R + r = + ˙
9 8 oveqd r = R x + r y = x + ˙ y
10 fveq2 r = R 1 r = 1 R
11 10 3 eqtr4di r = R 1 r = 1 ˙
12 9 11 eqeq12d r = R x + r y = 1 r x + ˙ y = 1 ˙
13 fveq2 r = R Unit r = Unit R
14 13 4 eqtr4di r = R Unit r = U
15 14 eleq2d r = R x Unit r x U
16 14 eleq2d r = R y Unit r y U
17 15 16 orbi12d r = R x Unit r y Unit r x U y U
18 12 17 imbi12d r = R x + r y = 1 r x Unit r y Unit r x + ˙ y = 1 ˙ x U y U
19 6 18 raleqbidv r = R y Base r x + r y = 1 r x Unit r y Unit r y B x + ˙ y = 1 ˙ x U y U
20 6 19 raleqbidv r = R x Base r y Base r x + r y = 1 r x Unit r y Unit r x B y B x + ˙ y = 1 ˙ x U y U
21 df-lring LRing = r NzRing | x Base r y Base r x + r y = 1 r x Unit r y Unit r
22 20 21 elrab2 R LRing R NzRing x B y B x + ˙ y = 1 ˙ x U y U