Step |
Hyp |
Ref |
Expression |
1 |
|
islring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
islring.a |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
islring.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
islring.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
7 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = + ) |
9 |
8
|
oveqd |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
12 |
9 11
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) ↔ ( 𝑥 + 𝑦 ) = 1 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) |
14 |
13 4
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
15 |
14
|
eleq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ↔ 𝑥 ∈ 𝑈 ) ) |
16 |
14
|
eleq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑦 ∈ ( Unit ‘ 𝑟 ) ↔ 𝑦 ∈ 𝑈 ) ) |
17 |
15 16
|
orbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ↔ ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) |
18 |
12 17
|
imbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) ↔ ( ( 𝑥 + 𝑦 ) = 1 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
19 |
6 18
|
raleqbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 1 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
20 |
6 19
|
raleqbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 1 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
21 |
|
df-lring |
⊢ LRing = { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) } |
22 |
20 21
|
elrab2 |
⊢ ( 𝑅 ∈ LRing ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 1 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |