| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | islring.a | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 3 |  | islring.1 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | islring.u | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 6 | 5 1 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  𝐵 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( +g ‘ 𝑟 )  =  ( +g ‘ 𝑅 ) ) | 
						
							| 8 | 7 2 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( +g ‘ 𝑟 )  =   +  ) | 
						
							| 9 | 8 | oveqd | ⊢ ( 𝑟  =  𝑅  →  ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 𝑥  +  𝑦 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( 1r ‘ 𝑟 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 11 | 10 3 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( 1r ‘ 𝑟 )  =   1  ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑟  =  𝑅  →  ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  ↔  ( 𝑥  +  𝑦 )  =   1  ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( Unit ‘ 𝑟 )  =  ( Unit ‘ 𝑅 ) ) | 
						
							| 14 | 13 4 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( Unit ‘ 𝑟 )  =  𝑈 ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( 𝑟  =  𝑅  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ↔  𝑥  ∈  𝑈 ) ) | 
						
							| 16 | 14 | eleq2d | ⊢ ( 𝑟  =  𝑅  →  ( 𝑦  ∈  ( Unit ‘ 𝑟 )  ↔  𝑦  ∈  𝑈 ) ) | 
						
							| 17 | 15 16 | orbi12d | ⊢ ( 𝑟  =  𝑅  →  ( ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) )  ↔  ( 𝑥  ∈  𝑈  ∨  𝑦  ∈  𝑈 ) ) ) | 
						
							| 18 | 12 17 | imbi12d | ⊢ ( 𝑟  =  𝑅  →  ( ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) )  ↔  ( ( 𝑥  +  𝑦 )  =   1   →  ( 𝑥  ∈  𝑈  ∨  𝑦  ∈  𝑈 ) ) ) ) | 
						
							| 19 | 6 18 | raleqbidv | ⊢ ( 𝑟  =  𝑅  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) )  ↔  ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  =   1   →  ( 𝑥  ∈  𝑈  ∨  𝑦  ∈  𝑈 ) ) ) ) | 
						
							| 20 | 6 19 | raleqbidv | ⊢ ( 𝑟  =  𝑅  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑟 ) ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  =   1   →  ( 𝑥  ∈  𝑈  ∨  𝑦  ∈  𝑈 ) ) ) ) | 
						
							| 21 |  | df-lring | ⊢ LRing  =  { 𝑟  ∈  NzRing  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑟 ) ∀ 𝑦  ∈  ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 )  =  ( 1r ‘ 𝑟 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑟 )  ∨  𝑦  ∈  ( Unit ‘ 𝑟 ) ) ) } | 
						
							| 22 | 20 21 | elrab2 | ⊢ ( 𝑅  ∈  LRing  ↔  ( 𝑅  ∈  NzRing  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  =   1   →  ( 𝑥  ∈  𝑈  ∨  𝑦  ∈  𝑈 ) ) ) ) |