Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | lringnzr | ⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lring | ⊢ LRing = { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) = ( 1r ‘ 𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) } | |
2 | 1 | ssrab3 | ⊢ LRing ⊆ NzRing |
3 | 2 | sseli | ⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing ) |