Metamath Proof Explorer


Theorem lringnzr

Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025)

Ref Expression
Assertion lringnzr ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing )

Proof

Step Hyp Ref Expression
1 df-lring LRing = { 𝑟 ∈ NzRing ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( +g𝑟 ) 𝑦 ) = ( 1r𝑟 ) → ( 𝑥 ∈ ( Unit ‘ 𝑟 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑟 ) ) ) }
2 1 ssrab3 LRing ⊆ NzRing
3 2 sseli ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing )