Metamath Proof Explorer


Theorem lringnzr

Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025)

Ref Expression
Assertion lringnzr R LRing R NzRing

Proof

Step Hyp Ref Expression
1 df-lring LRing = r NzRing | x Base r y Base r x + r y = 1 r x Unit r y Unit r
2 1 ssrab3 LRing NzRing
3 2 sseli R LRing R NzRing