Database
BASIC ALGEBRAIC STRUCTURES
Rings
Local rings
lringnzr
Next ⟩
lringring
Metamath Proof Explorer
Ascii
Unicode
Theorem
lringnzr
Description:
A local ring is a nonzero ring.
(Contributed by
SN
, 23-Feb-2025)
Ref
Expression
Assertion
lringnzr
⊢
R
∈
LRing
→
R
∈
NzRing
Proof
Step
Hyp
Ref
Expression
1
df-lring
⊢
LRing
=
r
∈
NzRing
|
∀
x
∈
Base
r
∀
y
∈
Base
r
x
+
r
y
=
1
r
→
x
∈
Unit
⁡
r
∨
y
∈
Unit
⁡
r
2
1
ssrab3
⊢
LRing
⊆
NzRing
3
2
sseli
⊢
R
∈
LRing
→
R
∈
NzRing