Metamath Proof Explorer


Theorem lringnzr

Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025)

Ref Expression
Assertion lringnzr Could not format assertion : No typesetting found for |- ( R e. LRing -> R e. NzRing ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-lring Could not format LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } : No typesetting found for |- LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } with typecode |-
2 1 ssrab3 Could not format LRing C_ NzRing : No typesetting found for |- LRing C_ NzRing with typecode |-
3 2 sseli Could not format ( R e. LRing -> R e. NzRing ) : No typesetting found for |- ( R e. LRing -> R e. NzRing ) with typecode |-