Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | lringnzr | |- ( R e. LRing -> R e. NzRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lring | |- LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } |
|
2 | 1 | ssrab3 | |- LRing C_ NzRing |
3 | 2 | sseli | |- ( R e. LRing -> R e. NzRing ) |