Metamath Proof Explorer


Theorem lringnzr

Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025)

Ref Expression
Assertion lringnzr
|- ( R e. LRing -> R e. NzRing )

Proof

Step Hyp Ref Expression
1 df-lring
 |-  LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) }
2 1 ssrab3
 |-  LRing C_ NzRing
3 2 sseli
 |-  ( R e. LRing -> R e. NzRing )