Metamath Proof Explorer


Theorem lringring

Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)

Ref Expression
Assertion lringring
|- ( R e. LRing -> R e. Ring )

Proof

Step Hyp Ref Expression
1 lringnzr
 |-  ( R e. LRing -> R e. NzRing )
2 nzrring
 |-  ( R e. NzRing -> R e. Ring )
3 1 2 syl
 |-  ( R e. LRing -> R e. Ring )