Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lringnz.1 | |- .1. = ( 1r ` R ) |
|
lringnz.2 | |- .0. = ( 0g ` R ) |
||
Assertion | lringnz | |- ( R e. LRing -> .1. =/= .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lringnz.1 | |- .1. = ( 1r ` R ) |
|
2 | lringnz.2 | |- .0. = ( 0g ` R ) |
|
3 | lringnzr | |- ( R e. LRing -> R e. NzRing ) |
|
4 | 1 2 | nzrnz | |- ( R e. NzRing -> .1. =/= .0. ) |
5 | 3 4 | syl | |- ( R e. LRing -> .1. =/= .0. ) |