Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lringnz.1 | |- .1. = ( 1r ` R ) | |
| lringnz.2 | |- .0. = ( 0g ` R ) | ||
| Assertion | lringnz | |- ( R e. LRing -> .1. =/= .0. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lringnz.1 | |- .1. = ( 1r ` R ) | |
| 2 | lringnz.2 | |- .0. = ( 0g ` R ) | |
| 3 | lringnzr | |- ( R e. LRing -> R e. NzRing ) | |
| 4 | 1 2 | nzrnz | |- ( R e. NzRing -> .1. =/= .0. ) | 
| 5 | 3 4 | syl | |- ( R e. LRing -> .1. =/= .0. ) |