Metamath Proof Explorer


Theorem lringnz

Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)

Ref Expression
Hypotheses lringnz.1
|- .1. = ( 1r ` R )
lringnz.2
|- .0. = ( 0g ` R )
Assertion lringnz
|- ( R e. LRing -> .1. =/= .0. )

Proof

Step Hyp Ref Expression
1 lringnz.1
 |-  .1. = ( 1r ` R )
2 lringnz.2
 |-  .0. = ( 0g ` R )
3 lringnzr
 |-  ( R e. LRing -> R e. NzRing )
4 1 2 nzrnz
 |-  ( R e. NzRing -> .1. =/= .0. )
5 3 4 syl
 |-  ( R e. LRing -> .1. =/= .0. )