Metamath Proof Explorer
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
lringnz.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
|
|
lringnz.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
Assertion |
lringnz |
⊢ ( 𝑅 ∈ LRing → 1 ≠ 0 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lringnz.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 2 |
|
lringnz.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
lringnzr |
⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing ) |
| 4 |
1 2
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → 1 ≠ 0 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑅 ∈ LRing → 1 ≠ 0 ) |