Metamath Proof Explorer


Theorem lringnz

Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)

Ref Expression
Hypotheses lringnz.1 1 = ( 1r𝑅 )
lringnz.2 0 = ( 0g𝑅 )
Assertion lringnz ( 𝑅 ∈ LRing → 10 )

Proof

Step Hyp Ref Expression
1 lringnz.1 1 = ( 1r𝑅 )
2 lringnz.2 0 = ( 0g𝑅 )
3 lringnzr ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing )
4 1 2 nzrnz ( 𝑅 ∈ NzRing → 10 )
5 3 4 syl ( 𝑅 ∈ LRing → 10 )