Step |
Hyp |
Ref |
Expression |
1 |
|
lring.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
2 |
|
lring.u |
⊢ ( 𝜑 → 𝑈 = ( Unit ‘ 𝑅 ) ) |
3 |
|
lring.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
4 |
|
lring.l |
⊢ ( 𝜑 → 𝑅 ∈ LRing ) |
5 |
|
lring.s |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |
6 |
|
lring.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
lring.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
lringring |
⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ Ring ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
6 1
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
11 |
5 2
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
16 |
12 13 14 15
|
dvrcan1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = 𝑋 ) |
17 |
9 10 11 16
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = 𝑋 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = 𝑋 ) |
19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
21 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) |
22 |
13 15
|
unitmulcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
23 |
19 20 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
24 |
18 23
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
25 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑈 = ( Unit ‘ 𝑅 ) ) |
26 |
24 25
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑋 ∈ 𝑈 ) |
27 |
26
|
orcd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) |
28 |
7 1
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑅 ) ) |
29 |
12 13 14 15
|
dvrcan1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = 𝑌 ) |
30 |
9 28 11 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = 𝑌 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = 𝑌 ) |
32 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
34 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) |
35 |
13 15
|
unitmulcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
36 |
32 33 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
37 |
31 36
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑌 ∈ ( Unit ‘ 𝑅 ) ) |
38 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑈 = ( Unit ‘ 𝑅 ) ) |
39 |
37 38
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑌 ∈ 𝑈 ) |
40 |
39
|
olcd |
⊢ ( ( 𝜑 ∧ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) |
41 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
42 |
12 13 41 14
|
dvrdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ) ) |
43 |
9 10 28 11 42
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ) ) |
44 |
3
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = + ) |
45 |
44
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
46 |
9
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
47 |
12 41 46 10 28
|
grpcld |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ∈ ( Base ‘ 𝑅 ) ) |
48 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
49 |
12 13 14 48
|
dvreq1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = ( 1r ‘ 𝑅 ) ↔ ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) ) |
50 |
9 47 11 49
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = ( 1r ‘ 𝑅 ) ↔ ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) ) |
51 |
45 50
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) = ( 1r ‘ 𝑅 ) ) |
52 |
43 51
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ) = ( 1r ‘ 𝑅 ) ) |
53 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) = ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ) ) |
54 |
53
|
eqeq1d |
⊢ ( 𝑣 = ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) ↔ ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ) = ( 1r ‘ 𝑅 ) ) ) |
55 |
|
eleq1 |
⊢ ( 𝑣 = ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( 𝑣 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) |
56 |
55
|
orbi2d |
⊢ ( 𝑣 = ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ↔ ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) ) |
57 |
54 56
|
imbi12d |
⊢ ( 𝑣 = ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ↔ ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ) = ( 1r ‘ 𝑅 ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) ) ) |
58 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) = ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) ) |
59 |
58
|
eqeq1d |
⊢ ( 𝑢 = ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) ↔ ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) ) ) |
60 |
|
eleq1 |
⊢ ( 𝑢 = ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( 𝑢 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) |
61 |
60
|
orbi1d |
⊢ ( 𝑢 = ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( ( 𝑢 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ↔ ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ) |
62 |
59 61
|
imbi12d |
⊢ ( 𝑢 = ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( 𝑢 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ↔ ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ) ) |
63 |
62
|
ralbidv |
⊢ ( 𝑢 = ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) → ( ∀ 𝑣 ∈ ( Base ‘ 𝑅 ) ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( 𝑢 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ) ) |
64 |
12 41 48 13
|
islring |
⊢ ( 𝑅 ∈ LRing ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑅 ) ∀ 𝑣 ∈ ( Base ‘ 𝑅 ) ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( 𝑢 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ) ) |
65 |
4 64
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ NzRing ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑅 ) ∀ 𝑣 ∈ ( Base ‘ 𝑅 ) ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( 𝑢 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ) ) |
66 |
65
|
simprd |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( Base ‘ 𝑅 ) ∀ 𝑣 ∈ ( Base ‘ 𝑅 ) ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( 𝑢 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ) |
67 |
12 13 14
|
dvrcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Base ‘ 𝑅 ) ) |
68 |
9 10 11 67
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Base ‘ 𝑅 ) ) |
69 |
63 66 68
|
rspcdva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) = ( 1r ‘ 𝑅 ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ 𝑣 ∈ ( Unit ‘ 𝑅 ) ) ) ) |
70 |
12 13 14
|
dvrcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑋 + 𝑌 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Base ‘ 𝑅 ) ) |
71 |
9 28 11 70
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Base ‘ 𝑅 ) ) |
72 |
57 69 71
|
rspcdva |
⊢ ( 𝜑 → ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ) = ( 1r ‘ 𝑅 ) → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) ) |
73 |
52 72
|
mpd |
⊢ ( 𝜑 → ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ∨ ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋 + 𝑌 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) |
74 |
27 40 73
|
mpjaodan |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) |