| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lring.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑅 ) ) | 
						
							| 2 |  | lring.u | ⊢ ( 𝜑  →  𝑈  =  ( Unit ‘ 𝑅 ) ) | 
						
							| 3 |  | lring.p | ⊢ ( 𝜑  →   +   =  ( +g ‘ 𝑅 ) ) | 
						
							| 4 |  | lring.l | ⊢ ( 𝜑  →  𝑅  ∈  LRing ) | 
						
							| 5 |  | lring.s | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  ∈  𝑈 ) | 
						
							| 6 |  | lring.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | lring.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 8 |  | lringring | ⊢ ( 𝑅  ∈  LRing  →  𝑅  ∈  Ring ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 10 | 6 1 | eleqtrd | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 11 | 5 2 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 14 |  | eqid | ⊢ ( /r ‘ 𝑅 )  =  ( /r ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 16 | 12 13 14 15 | dvrcan1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  𝑋 ) | 
						
							| 17 | 9 10 11 16 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  𝑋 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  𝑋 ) | 
						
							| 19 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 21 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 22 | 13 15 | unitmulcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∧  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 24 | 18 23 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  𝑋  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 25 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  𝑈  =  ( Unit ‘ 𝑅 ) ) | 
						
							| 26 | 24 25 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  𝑋  ∈  𝑈 ) | 
						
							| 27 | 26 | orcd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋  ∈  𝑈  ∨  𝑌  ∈  𝑈 ) ) | 
						
							| 28 | 7 1 | eleqtrd | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 12 13 14 15 | dvrcan1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑌  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  𝑌 ) | 
						
							| 30 | 9 28 11 29 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  𝑌 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  𝑌 ) | 
						
							| 32 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 34 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 35 | 13 15 | unitmulcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∧  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 36 | 32 33 34 35 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( .r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 37 | 31 36 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  𝑌  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 38 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  𝑈  =  ( Unit ‘ 𝑅 ) ) | 
						
							| 39 | 37 38 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  𝑌  ∈  𝑈 ) | 
						
							| 40 | 39 | olcd | ⊢ ( ( 𝜑  ∧  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋  ∈  𝑈  ∨  𝑌  ∈  𝑈 ) ) | 
						
							| 41 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 42 | 12 13 41 14 | dvrdir | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  ( Base ‘ 𝑅 )  ∧  𝑌  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) ) )  →  ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 43 | 9 10 28 11 42 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 44 | 3 | eqcomd | ⊢ ( 𝜑  →  ( +g ‘ 𝑅 )  =   +  ) | 
						
							| 45 | 44 | oveqd | ⊢ ( 𝜑  →  ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 )  =  ( 𝑋  +  𝑌 ) ) | 
						
							| 46 | 9 | ringgrpd | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 47 | 12 41 46 10 28 | grpcld | ⊢ ( 𝜑  →  ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 48 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 49 | 12 13 14 48 | dvreq1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) )  →  ( ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  ( 1r ‘ 𝑅 )  ↔  ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 )  =  ( 𝑋  +  𝑌 ) ) ) | 
						
							| 50 | 9 47 11 49 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  ( 1r ‘ 𝑅 )  ↔  ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 )  =  ( 𝑋  +  𝑌 ) ) ) | 
						
							| 51 | 45 50 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑋 ( +g ‘ 𝑅 ) 𝑌 ) ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 52 | 43 51 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 53 |  | oveq2 | ⊢ ( 𝑣  =  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 )  =  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ) ) | 
						
							| 54 | 53 | eqeq1d | ⊢ ( 𝑣  =  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  ↔  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 55 |  | eleq1 | ⊢ ( 𝑣  =  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( 𝑣  ∈  ( Unit ‘ 𝑅 )  ↔  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) ) | 
						
							| 56 | 55 | orbi2d | ⊢ ( 𝑣  =  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) )  ↔  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) ) ) | 
						
							| 57 | 54 56 | imbi12d | ⊢ ( 𝑣  =  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) )  ↔  ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) )  =  ( 1r ‘ 𝑅 )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) ) ) ) | 
						
							| 58 |  | oveq1 | ⊢ ( 𝑢  =  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  =  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 ) ) | 
						
							| 59 | 58 | eqeq1d | ⊢ ( 𝑢  =  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  ↔  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 60 |  | eleq1 | ⊢ ( 𝑢  =  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( 𝑢  ∈  ( Unit ‘ 𝑅 )  ↔  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) ) | 
						
							| 61 | 60 | orbi1d | ⊢ ( 𝑢  =  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( ( 𝑢  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) )  ↔  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) ) ) | 
						
							| 62 | 59 61 | imbi12d | ⊢ ( 𝑢  =  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( 𝑢  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) )  ↔  ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) ) ) ) | 
						
							| 63 | 62 | ralbidv | ⊢ ( 𝑢  =  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  →  ( ∀ 𝑣  ∈  ( Base ‘ 𝑅 ) ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( 𝑢  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) )  ↔  ∀ 𝑣  ∈  ( Base ‘ 𝑅 ) ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) ) ) ) | 
						
							| 64 | 12 41 48 13 | islring | ⊢ ( 𝑅  ∈  LRing  ↔  ( 𝑅  ∈  NzRing  ∧  ∀ 𝑢  ∈  ( Base ‘ 𝑅 ) ∀ 𝑣  ∈  ( Base ‘ 𝑅 ) ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( 𝑢  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) ) ) ) | 
						
							| 65 | 4 64 | sylib | ⊢ ( 𝜑  →  ( 𝑅  ∈  NzRing  ∧  ∀ 𝑢  ∈  ( Base ‘ 𝑅 ) ∀ 𝑣  ∈  ( Base ‘ 𝑅 ) ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( 𝑢  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) ) ) ) | 
						
							| 66 | 65 | simprd | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( Base ‘ 𝑅 ) ∀ 𝑣  ∈  ( Base ‘ 𝑅 ) ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( 𝑢  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) ) ) | 
						
							| 67 | 12 13 14 | dvrcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 68 | 9 10 11 67 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 69 | 63 66 68 | rspcdva | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ( Base ‘ 𝑅 ) ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) 𝑣 )  =  ( 1r ‘ 𝑅 )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  𝑣  ∈  ( Unit ‘ 𝑅 ) ) ) ) | 
						
							| 70 | 12 13 14 | dvrcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑌  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑋  +  𝑌 )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 71 | 9 28 11 70 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 72 | 57 69 71 | rspcdva | ⊢ ( 𝜑  →  ( ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) ) )  =  ( 1r ‘ 𝑅 )  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) ) ) | 
						
							| 73 | 52 72 | mpd | ⊢ ( 𝜑  →  ( ( 𝑋 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 )  ∨  ( 𝑌 ( /r ‘ 𝑅 ) ( 𝑋  +  𝑌 ) )  ∈  ( Unit ‘ 𝑅 ) ) ) | 
						
							| 74 | 27 40 73 | mpjaodan | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝑈  ∨  𝑌  ∈  𝑈 ) ) |