Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | lringring | ⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lringnzr | ⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing ) | |
2 | nzrring | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) | |
3 | 1 2 | syl | ⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ Ring ) |