Metamath Proof Explorer


Theorem lringring

Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)

Ref Expression
Assertion lringring ( 𝑅 ∈ LRing → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 lringnzr ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing )
2 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
3 1 2 syl ( 𝑅 ∈ LRing → 𝑅 ∈ Ring )