Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025) (Revised by SN, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lringring | ⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ Ring ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lringnzr | ⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ NzRing ) | |
| 2 | nzrring | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑅 ∈ LRing → 𝑅 ∈ Ring ) |